Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T15:08:29.038Z Has data issue: false hasContentIssue false

An a priori Campanato type regularity condition for local minimisers in the calculus of variations

Published online by Cambridge University Press:  21 October 2008

Thomas J. Dodd*
Affiliation:
Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK. T.J.Dodd@ma.hw.ac.uk
Get access

Abstract

An a priori Campanato type regularity condition is established for a class of W1X local minimisers $\overline{u}$ of the general variational integral $ \int_{\Omega} F(\nabla u(x))\,{\rm d}x$ where $\Omega \subset \mathbb{R}^n$ is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition$ F(\xi)\leq c(1+|\xi|^p)$ for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space $\mathcal{L}^{p,\mu} (\Omega,\mathbb{R}^{N\times n})$, µ < n, Campanato space $\mathcal{L}^{p,n}(\Omega,\mathbb{R}^{N\times n})$ and the space of bounded mean oscillation $ {\rm BMO} \Omega,\mathbb{R}^{N\times n})$. The admissible maps $u\colon \Omega \to \mathbb{R}^N$ are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E. and Fusco, N., A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261281. CrossRef
Acerbi, E. and Fusco, N., Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 603636.
Acerbi, E. and Fusco, N., Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115135. CrossRef
Campanato, S., Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 175188.
Carozza, M. and Passarelli di, A. Napoli, Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh 133 (2003) 12491262. CrossRef
Carozza, M., Fusco, N. and Mingione, G., Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 175 (1998) 141164. CrossRef
Duzaar, F., Grotowski, J.F. and Kronz, M., Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. 184 (2005) 421448. CrossRef
Evans, L.C., Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227252. CrossRef
Fefferman, C. and Stein, E.M., Hp spaces of several variables. Acta Math. 129 (1972) 137193. CrossRef
N.B. Firoozye, Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).
E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003).
Giusti, E. and Miranda, M., Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968) 173184. CrossRef
Grabovsky, Y. and Mengesha, T., Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations 29 (2007) 5983. CrossRef
John, F. and Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415426. CrossRef
Kristensen, J. and Taheri, A., Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 6389. CrossRef
R. Moser, Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).
Müller, S. and Šverák, V., Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003) 715742. CrossRef