Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T13:57:46.258Z Has data issue: false hasContentIssue false

Transitivity of codimension-one Anosov actions of ℝk on closed manifolds

Published online by Cambridge University Press:  18 January 2010

THIERRY BARBOT
Affiliation:
CNRS, UMR 5669, UMPA, ENS Lyon 46, allée d’Italie 69364 Lyon, France (email: barbot@umpa.ens-lyon.fr) LANLG, Université d’Avignon, 33, rue Louis Pasteur, 84000 Avignon, France (email: thierry.barbot@univ-avignon.fr)
CARLOS MAQUERA
Affiliation:
Universidade de São Paulo - São Carlos, Instituto de ciências matemáticas e de Computação, Av. do Trabalhador São-Carlense 400, 13560-970 São Carlos, SP, Brazil (email: cmaquera@icmc.usp.br)

Abstract

We consider Anosov actions of ℝk, k≥2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of ℝk has dimension one. We prove that if the ambient manifold has dimension greater than k+2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Asaoka, M.. On Invariant volumes of codimension-one Anosov flows and the Verjovsky conjecture. Invent. Math. 174(2) (2008), 435462.CrossRefGoogle Scholar
[2]Barbot, T.. Géométrie transverse des flots d’Anosov. PhD Thesis, École normale supérieure de Lyon,1992.Google Scholar
[3]Brin, M. I.. Topological transitivity of one class of dynamical systems, and flows of frames on manifolds of negative curvature. Funktsional. Anal. i Prilozhen 9 (1975), 919.CrossRefGoogle Scholar
[4]Brin, M. I.. The topology of group extensions of C-systems. Mat. Zametki 3 (1975), 453465.Google Scholar
[5]Candel, A. and Conlon, L.. Foliations I (Graduate Studies in Mathematics, 23). American Mathematical Society, Providence, RI, 2000.Google Scholar
[6]Conley, C.. Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.CrossRefGoogle Scholar
[7]Franks, J.. Anosov diffeomorphisms. Global Analysis (Proceedings of Symposia in Pure Mathematics, 14). American Mathematical Society, Providence, RI, 1970, pp. 6193.CrossRefGoogle Scholar
[8]Franks, J. and Williams, B.. Anomalous Anosov Flows (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980, pp. 158174.Google Scholar
[9]Ghys, E.. Codimension One Anosov Flows and Suspensions (Lecture Notes in Mathematics, 1331). Springer, Berlin, 1988, pp. 5972.Google Scholar
[10]Ghys, E.. Déformations de flots d’Anosov et de groupes fuchsiens. Ann. Inst. Fourier. 42 (1992), 209247.CrossRefGoogle Scholar
[11]Ghys, E.. Rigidité différentiable des groupes fuchsiens. Publ. Math. Inst. Hautes Études Sci. 78 (1993), 163185.CrossRefGoogle Scholar
[12]Hirsch, M., Pugh, C. and Shub, M.. Invariant Manifolds (Lecture Notes in Mathematics, 583). Springer, Berlin, 1977.CrossRefGoogle Scholar
[13]Katok, A. and Spatzier, R.. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ. Math. Inst. Hautes Études Sci. 79 (1994), 131156.CrossRefGoogle Scholar
[14]Katok, A. and Spatzier, R.. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Proc. Steklov Inst. Math. 1(216) (1997), 287314.Google Scholar
[15]Labourie, F.. Anosov flows, surface groups and curves in projective space. Invent. Math. 165 (2006), 51114.CrossRefGoogle Scholar
[16]Matsumoto, S.. Codimension One Anosov Flows (Lecture Notes Series, 27). Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1995, p. 27.Google Scholar
[17]Newhouse, S. E.. On codimension one Anosov diffeomorphisms. Amer. J. Math. 92 (1970), 761770.CrossRefGoogle Scholar
[18]Palis, J. and Yoccoz, J. C.. Centralizers of Anosov diffeomorphisms on tori. Ann. Sci. École Norm. Sup. (4) 22(4) (1989), 99108.CrossRefGoogle Scholar
[19]Palmeira, C. F. B.. Open manifolds foliated by planes. Ann. of Math. (2) 107 (1978), 109131.CrossRefGoogle Scholar
[20]Pugh, C. and Shub, M.. Ergodicity of Anosov actions. Invent. Math. 15 (1972), 123.CrossRefGoogle Scholar
[21]Raghunathan, M. S.. Discrete Subgroups of Lie Groups. Springer, New York, 1972.CrossRefGoogle Scholar
[22]Simic, S. N.. Codimension one Anosov flows and a conjecture of Verjovsky. Ergod. Th. & Dynam. Sys. 17 (1997), 12111231.CrossRefGoogle Scholar
[23]Simic, S. N.. Volume preserving codimension one Anosov flows in dimensions greater than three are suspensions. ArXiv math.DS/0508024.Google Scholar
[24]Tomter, P.. Anosov flows on infra-homogeneous spaces. Global Analysis (Proceedings of Symposia in Pure Mathematics, 14). American Mathematical Society, Providence, RI, 1970, pp. 299327.CrossRefGoogle Scholar
[25]Tomter, P.. On the classification of Anosov flows. Topology 14 (1975), 179189.CrossRefGoogle Scholar
[26]Verjovsky, A.. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana (2) 19(2) (1974), 4977.Google Scholar