Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T05:26:56.025Z Has data issue: false hasContentIssue false

Sensitivity and historic behavior for continuous maps on Baire metric spaces

Published online by Cambridge University Press:  07 February 2023

MARIA CARVALHO
Affiliation:
CMUP & Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal (e-mail: mpcarval@fc.up.pt)
VINICIUS COELHO
Affiliation:
Centro Multidisciplinar de Bom Jesus da Lapa, Universidade Federal do Oeste da Bahia, Av. Manoel Novais, 1064, Centro, Bom Jesus da Lapa 47600-000, Bahia, Brazil (e-mail: viniciuscs@ufob.edu.br)
LUCIANA SALGADO*
Affiliation:
Departamento de Matemática, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149 Cidade Universitária, P.O. Box 68530, Rio de Janeiro 21941-909, Rio de Janeiro, Brazil
PAULO VARANDAS
Affiliation:
CMUP & Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal (e-mail: mpcarval@fc.up.pt) Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, Salvador 40170-110, Bahia, Brazil (e-mail: paulo.varandas@ufba.br)

Abstract

We introduce a notion of sensitivity with respect to a continuous real-valued bounded map which provides a sufficient condition for a continuous transformation, acting on a Baire metric space, to exhibit a Baire generic subset of points with historic behavior (also known as irregular points). The applications of this criterion recover, and extend, several known theorems on the genericity of the irregular set, in addition to yielding a number of new results, including information on the irregular set of geodesic flows, in both negative and non-positive curvature, and semigroup actions.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, E. and Carlson, J. D.. Conceptions of topological transitivity. Topology Appl. 159 (2012), 28152830.CrossRefGoogle Scholar
Araújo, V. and Pinheiro, V.. Abundance of wild historic behavior. Bull. Braz. Math. Soc. (N.S.) 52(1) (2021), 4176.CrossRefGoogle Scholar
Barreira, L., Li, J. and Valls, C.. Irregular points are Baire generic. Tohoku Math. J. (2) 66 (2014), 471489.Google Scholar
Barreira, L. and Schmeling, J.. Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 2970.CrossRefGoogle Scholar
Barrientos, P., Kiriki, S., Nakano, Y., Raibekas, A. and Soma, T.. Historic behavior in nonhyperbolic homoclinic classes. Proc. Amer. Math. Soc. 148 (2020), 11951206.CrossRefGoogle Scholar
Bonatti, C., Díaz, L. J. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences, 102). Springer-Verlag, Berlin, 2005.Google Scholar
Bufetov, A.. Convergence of spherical averages for actions of free groups. Ann. of Math. (2) 155 (2002), 929944.CrossRefGoogle Scholar
Bufetov, A., Khristoforov, M. and Klimenko, A.. Birkhoff convergence of spherical averages for measure-preserving actions of Markov semigroups and groups. Int. Math. Res. Not. IMRN 21 (2012), 47974829.CrossRefGoogle Scholar
Carvalho, M. and Varandas, P.. Genericity of historic behavior for maps and flows. Nonlinearity 34 (2021), 70307044.CrossRefGoogle Scholar
Chen, J., Wang, F. and Zhang, H.-K.. Markov partition and thermodynamic formalism for hyperbolic systems with singularities. Preprint, 2019, arXiv:1709.00527.Google Scholar
Chung, N. and Li, H.. Homoclinic groups, IE groups and expansive algebraic actions. Invent. Math. 199(3) (2015), 805858.CrossRefGoogle Scholar
Coudène, Y. and Schapira, B.. Generic measures for hyperbolic flows on non compact spaces. Israel J. Math. 179 (2010), 157172.CrossRefGoogle Scholar
Coudène, Y. and Schapira, B.. Generic measures for geodesic flows on nonpositively curved manifolds. J. Éc. Polytech. Math. 1 (2014), 387408.CrossRefGoogle Scholar
Coven, E. and Reddy, W.. Positively expansive maps of compact manifolds. Global Theory of Dynamical Systems (Lecture Notes in Mathematics, 819). Eds. Nitecki, Z. and Robinson, C.. Springer, Berlin, 1980.Google Scholar
Dowker, Y. N.. The mean and transitive points of homeomorphisms. Ann. of Math. (2) 58(1) (1953), 123133.CrossRefGoogle Scholar
Dunford, N. and Schwartz, J.. Linear Operators - Part 1: General Theory, 1st edn. John Wiley & Sons Inc., New York, 1958.Google Scholar
Ferreira, G. and Varandas, P.. Lyapunov non-typical behavior for linear cocycles through the lens of semigroup actions. Preprint, 2021, arXiv:2106.15676.Google Scholar
Gan, S. and Shi, Y.. Robustly topological mixing of Kan’s map. J. Differential Equations 266 (2019), 71737196.CrossRefGoogle Scholar
Hofbauer, F.. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II. Israel J. Math. 38(1–2) (1981), 107115.CrossRefGoogle Scholar
Hou, X., Lin, W. and Tian, X.. Ergodic average of typical orbits and typical functions. Preprint, 2021, arXiv:2107.00205v2.Google Scholar
Kan, I.. Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Amer. Math. Soc. (N.S.) 31 (1994), 6874.CrossRefGoogle Scholar
Kelley, J.. General Topology. Van Nostrand, Princeton, NJ, 1955.Google Scholar
Li, J. and Wu, M.. Generic property of irregular sets in systems satisfying the specification property. Discrete Contin. Dyn. Syst. 34 (2014), 635645.Google Scholar
Lima, H. and Varandas, P.. On the rotation sets of generic homeomorphisms on the torus ${T}^d$ . Ergod. Th. & Dynam. Sys. 41 (2021), 29833022.CrossRefGoogle Scholar
Lindenstrauss, E.. Pointwise theorems for amenable groups. Invent. Math. 146 (2001), 259295.CrossRefGoogle Scholar
Ollagnier, J. M.. Ergodic Theory and Statistical Mechanics (Lecture Notes in Mathematics, 1115). Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
Ornstein, D. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 (1987), 1141.CrossRefGoogle Scholar
Pfister, C. E. and Sullivan, W. G.. On the topological entropy of saturated sets. Ergod. Th. & Dynam. Sys. 27 (2007), 929956.CrossRefGoogle Scholar
Pinheiro, V.. Expanding measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 889939.CrossRefGoogle Scholar
Pinheiro, V.. Ergodic formalism for topological attractors and historic behavior. Preprint, 2022, arXiv:2107.12498v4.Google Scholar
Ren, X., Tian, X. and Zhou, Y.. On the topological entropy of saturated sets for amenable group actions. Preprint, 2022, arXiv:2008.05843v1.Google Scholar
Sarig, O.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
Sigmund, K.. On dynamical systems with the specification property. Trans. Amer. Math. Soc. 190 (1974), 285299.CrossRefGoogle Scholar
Tian, X.. Topological pressure for the completely irregular set of Birkhoff averages. Discrete Contin. Dyn. Syst. Ser. A 37(5) (2017), 27452763.CrossRefGoogle Scholar
Tian, X. and Varandas, P.. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete Contin. Dyn. Syst. Ser. A 37(10) (2017), 54075431.CrossRefGoogle Scholar
Winkler, R.. A little topological counterpart of Birkhoff’s ergodic theorem. Unif. Distrib. Theory 5(1) (2010), 157162.Google Scholar