Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T02:24:34.744Z Has data issue: false hasContentIssue false

Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ${\mathbb C}^2$

Published online by Cambridge University Press:  22 November 2021

ANNA MIRIAM BENINI*
Affiliation:
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli studi di Parma, Parco Area delle Scienze, 53/A, 43124 Parma PR, Italy
ALBERTO SARACCO
Affiliation:
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli studi di Parma, Parco Area delle Scienze, 53/A, 43124 Parma PR, Italy
MICHELA ZEDDA
Affiliation:
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli studi di Parma, Parco Area delle Scienze, 53/A, 43124 Parma PR, Italy

Abstract

We construct automorphisms of ${\mathbb C}^2$ , and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form $F(z,w)=(g(z,w),z)$ with $g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$ holomorphic.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arosio, L., Benini, A. M., Fornæss, J. E. and Peters, H.. Dynamics of transcendental Hénon maps. Math. Ann. 373(1–2) (2019), 853894.CrossRefGoogle Scholar
Arosio, L., Benini, A. M., Fornæss, J. E. and Peters, H.. Dynamics of transcendental Hénon maps-II. Preprint, 2019, arXiv:1905.11557.Google Scholar
Arosio, L., Benini, A. M., Fornæss, J. E. and Peters, H.. Dynamics of transcendental Hénon maps III: infinite entropy. J. Mod. Dyn. (2021), to appear.CrossRefGoogle Scholar
Baker, I. N.. Infinite limits in the iteration of entire functions. Ergod. Th. & Dynam. Sys. 8 (1988), 503507.CrossRefGoogle Scholar
Bedford, E.. Fatou components for conservative holomorphic surface automorphisms. Geometric Complex Analysis (Springer Proceedings in Mathematics & Statistics, 246). Springer, Singapore, 2018, pp. 3354.CrossRefGoogle Scholar
Barański, K., Fagella, N., Jarque, X. and Karpińska, B.. Absorbing sets and Baker domains for holomorphic maps. J. Lond. Math. Soc. (2) 92(1) (2015), 144162.CrossRefGoogle Scholar
Barański, K., Fagella, N., Jarque, X. and Karpińska, B.. Escaping points in the boundaries of Baker domains. J. Anal. Math. 137(2) (2019), 679706.CrossRefGoogle Scholar
Bracci, F., Raissy, J. and Stensønes, B.. Automorphisms of ${\mathbb{C}}^k$ with an invariant non-recurrent attracting Fatou component biholomorphic to $\mathbb{C}\times {\left({\mathbb{C}}^{\ast}\right)}^{k-1}$ . J. Eur. Math. Soc. (JEMS) 23(2) (2021), 639666.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathit{\mathsf{C}}}^2$ . II. Stable manifolds and recurrence. J. Amer. Math. Soc. 4(4) (1991), 657679.Google Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathsf{C}}^2$ . VII. Hyperbolicity and external rays. Ann. Sci. Éc. Norm. Supér. (4) 32(4) (1999), 455497.CrossRefGoogle Scholar
Thaler, L. B., Bracci, F. and Peters, H.. Automorphisms of ${\mathbb{C}}^2$ with parabolic cylinders. J. Geom. Anal. 31(4) (2021), 34983522.CrossRefGoogle Scholar
Bergweiler, W. and Zheng, J.-H.. Some examples of Baker domains. Nonlinearity 25(4) (2012), 10331044.CrossRefGoogle Scholar
Chirka, E. M.. Complex Analytic Sets (Mathematics and its Applications (Soviet Series), 46). Kluwer Academic, Dordrecht, 1989, pp. 125166, 258, translated from the Russian by R. A. M. Hoksbergen.Google Scholar
Cowen, C. C.. Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Amer. Math. Soc. 265(1) (1981), 6995.CrossRefGoogle Scholar
Dujardin, R.. Hénon-like mappings in ${\mathbb{C}}^2$ . Amer. J. Math. 126(2) (2004), 439472.CrossRefGoogle Scholar
Fagella, N. and Henriksen, C.. Deformation of entire functions with Baker domains. Discrete Contin. Dyn. Syst. 15(2) (2006), 379394.CrossRefGoogle Scholar
Friedland, S. and Milnor, J.. Dynamical properties of plane polynomial automorphisms. Ergod. Th. & Dynam. Sys. 9(1) (1989), 6799.CrossRefGoogle Scholar
Gaier, D.. Lectures on Complex Approximation. Birkhäuser Boston, Inc., Boston, MA, 1987, translated from the German by R. McLaughlin.CrossRefGoogle Scholar
Hubbard, J. H. and Oberste-Vorth, R. W.. Hénon mappings in the complex domain. I. The global topology of dynamical space. Publ. Math. Inst. Hautes Études Sci. 79 (1994), 546.CrossRefGoogle Scholar
Jupiter, D. and Lilov, K.. Invariant nonrecurrent Fatou components of automorphisms of ${\mathbb{C}}^2$ . Far East J. Dyn. Syst. 6(1) (2004), 4965.Google Scholar
Kaup, L. and Kaup, B.. Holomorphic Functions of Several Variables (De Gruyter Studies in Mathematics, 3). Walter de Gruyter & Co., Berlin, 1983, an introduction to the fundamental theory, with the assistance of G. Barthel, translated from the German by M. Bridgland.CrossRefGoogle Scholar
Krantz, S. G.. Function Theory of Several Complex Variables. AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1992 edition.CrossRefGoogle Scholar
Lyubich, M. and Peters, H.. Classification of invariant Fatou components for dissipative Hénon maps. Geom. Funct. Anal. 24(3) (2014), 887915.CrossRefGoogle Scholar
Mummert, P. P.. The solenoid and holomorphic motions for Hénon maps. Indiana Univ. Math. J. 56(6) (2007), 27392761.CrossRefGoogle Scholar
Peters, H., Vivas, L. R. and Wold, E. F.. Attracting basins of volume preserving automorphisms of ${\mathbb{C}}^k$ . Internat. J. Math. 19(7) (2008), 801810.CrossRefGoogle Scholar
Rempe, L.. Singular orbits and Baker domains. Math. Ann. (2021). doi:10.1007/s00208-020-02132-z. Published online 4 February 2021.Google Scholar
Reppekus, J.. Punctured parabolic cylinders in automorphisms of ${\mathbb{C}}^2$ . Int. Math. Res. Not. IMRN 2021(4) (2021), 27232735.CrossRefGoogle Scholar
Rosay, J.-P. and Rudin, W.. Holomorphic maps from ${\mathit{\mathsf{C}}}^n$ to $\ {\mathit{\mathsf{C}}}^n$ . Trans. Amer. Math. Soc. 310(1) (1988), 4786.Google Scholar
Rippon, P. J. and Stallard, G. M.. Boundaries of univalent Baker domains. J. Anal. Math. 134(2) (2018), 801810.CrossRefGoogle Scholar
Ueda, T.. Local structure of analytic transformations of two complex variables. I. J. Math. Kyoto Univ. 26(2) (1986), 233261.Google Scholar