Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T22:33:40.658Z Has data issue: false hasContentIssue false

Hausdorff measure of escaping and Julia sets for bounded-type functions of finite order

Published online by Cambridge University Press:  08 November 2011

JÖRN PETER*
Affiliation:
Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 4, 24098 Kiel, Germany (email: peter@math.uni-kiel.de)

Abstract

We show that the escaping sets and the Julia sets of bounded-type transcendental entire functions of order ρ become ‘smaller’ as ρ. More precisely, their Hausdorff measures are infinite with respect to the gauge function hγ(t)=t2g(1/t)γ, where g is the inverse of a linearizer of some exponential map and γ≥(log ρ(f)+K1)/c, but for ρ large enough, there exists a function fρ of bounded type with order ρ such that the Hausdorff measures of the escaping set and the Julia set of fρ with respect to hγ′ are zero whenever γ′ ≤(log ρK2)/c.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aspenberg, M. and Bergweiler, W.. Entire functions with Julia sets of positive measure. Math. Ann., doi:10.1007/s00208-010-0625-0.CrossRefGoogle Scholar
[2]Barański, K.. Hausdorff dimension of hairs and ends for entire maps of finite order. Math. Proc. Cambridge Philos. Soc. 145 (2008), 719737.CrossRefGoogle Scholar
[3]Beardon, A. F.. Iteration of Rational Functions. Springer, Berlin, 1991.CrossRefGoogle Scholar
[4]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151188.CrossRefGoogle Scholar
[5]Bergweiler, W., Karpińska, B. and Stallard, G. M.. The growth rate of an entire function and the Hausdorff dimension of its Julia set. J. Lond. Math. Soc. 80 (2009), 680698.CrossRefGoogle Scholar
[6]Bliedtner, J. and Loeb, P. A.. A reduction technique for limit theorems in analysis and probability theory. Ark. Mat. 30(1) (1992), 2543.CrossRefGoogle Scholar
[7]Eremenko, A. È.. On the iteration of entire functions. Dynamical Systems and Ergodic Theory (Banach Center Publications, 23). Polish Scientific Publishers, Warsaw, 1989, pp. 339345.Google Scholar
[8]Eremenko, A. È. and Lyubich, M.. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier 42 (1992), 9891020.CrossRefGoogle Scholar
[9]Goldberg, A. A. and Ostrovskii, I. V.. Value Distribution of Meromorphic Functions (Translations of Mathematical Monographs, 236). American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
[10]McMullen, C.. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1987), 329342.CrossRefGoogle Scholar
[11]Milnor, J.. Dynamics in One Complex Variable. Friedr. Vieweg & Sohn, Braunschweig, 1999.Google Scholar
[12]Nevanlinna, R.. Eindeutige Analytische Funktionen. Springer, Berlin, 1953.CrossRefGoogle Scholar
[13]Peter, J.. Hausdorff measure of Julia sets in the exponential family. J. Lond. Math. Soc. 82(1) (2010), 229255.CrossRefGoogle Scholar
[14]Rogers, C. A.. Hausdorff Measures. Cambridge University Press, London, 1970.Google Scholar
[15]Schubert, H.. Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung. Dissertation, University of Kiel, 2007.Google Scholar
[16]Stallard, G. M.. The Hausdorff dimension of Julia sets of entire functions IV. J. Lond. Math. Soc. 61(2) (2000), 471488.CrossRefGoogle Scholar
[17]Steinmetz, N.. Rational Iteration. De Gruyter, Berlin, 1993.CrossRefGoogle Scholar