Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T13:21:01.341Z Has data issue: false hasContentIssue false

Conditioned limit theorems for hyperbolic dynamical systems

Published online by Cambridge University Press:  20 March 2023

ION GRAMA*
Affiliation:
Université de Bretagne Sud, CNRS UMR 6205 LMBA, Campus de Tohannic 56017, Vannes, France
JEAN-FRANÇOIS QUINT
Affiliation:
Université de Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33405 Talence, France (e-mail: jean-francois.quint@math.u-bordeaux.fr)
HUI XIAO
Affiliation:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China (e-mail: xiaohui@amss.ac.cn)

Abstract

Let $({\mathbb X}, T)$ be a subshift of finite type equipped with the Gibbs measure $\nu $ and let f be a real-valued Hölder continuous function on ${\mathbb X}$ such that $\nu (f) = 0$. Consider the Birkhoff sums $S_n f = \sum _{k=0}^{n-1} f \circ T^{k}$, $n\geqslant 1$. For any $t \in {\mathbb R}$, denote by $\tau _t^f$ the first time when the sum $t+ S_n f$ leaves the positive half-line for some $n\geqslant 1$. By analogy with the case of random walks with independent and identically distributed increments, we study the asymptotic as $ n\to \infty $ of the probabilities $ \nu (x\in {\mathbb X}: \tau _t^f(x)>n) $ and $ {\nu (x\in {\mathbb X}: \tau _t^f(x)=n) }$. We also establish integral and local-type limit theorems for the sum $t+ S_n f(x)$ conditioned on the set $\{ x \in {\mathbb X}: \tau _t^f(x)>n \}.$

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertoin, J. and Doney, R. A.. On conditioning a random walk to stay nonnegative. Ann. Probab. 22(4) (1994), 21522167.CrossRefGoogle Scholar
Bolthausen, E.. On a functional central limit theorem for random walk conditioned to stay positive. Ann. Probab. 4(3) (1972), 480485.Google Scholar
Borovkov, A. A.. New limit theorems for boundary-valued problems for sums of independent terms. Sib. Math. J. 3(5) (1962), 645694.Google Scholar
Borovkov, A. A.. On the asymptotic behavior of the distributions of first-passage times. I. Math. Notes 75(1) (2004), 2337.CrossRefGoogle Scholar
Borovkov, A. A.. On the asymptotic behavior of distributions of first-passage times. II. Math. Notes 75(3) (2004), 322330.CrossRefGoogle Scholar
Caravenna, F.. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133(4) (2005), 508530.CrossRefGoogle Scholar
Denisov, D. and Wachtel, V.. Random walks in cones. Ann. Probab. 43(3) (2015), 9921044.CrossRefGoogle Scholar
Denisov, D. and Wachtel, V.. Alternative constructions of a harmonic function for a random walk in a cone. Electron. J. Probab. 92 (2019), 126.Google Scholar
Denker, M. and Philipp, W.. Approximation by Brownian motion for Gibbs measures and flows under a function. Ergod. Th. & Dynam. Sys. 4(4) (1984), 541552.CrossRefGoogle Scholar
Doney, R. A.. Local behavior of first passage probabilities. Probab. Theory Related Fields 152(3–4) (2012), 559588.CrossRefGoogle Scholar
Eichelsbacher, P. and König, W.. Ordered random walks. Electron. J. Probab. 13 (2008), 13071336.CrossRefGoogle Scholar
Eppel, M. S.. A local limit theorem for the first overshoot. Sib. Math. J. 20 (1979), 130138.CrossRefGoogle Scholar
Feller, W.. An Introduction to Probability Theory and Its Applications. Vol. 2. Wiley, New York, 1964.Google Scholar
Fisher, M. E.. Walks, walls, wetting, and melting. J. Stat. Phys. 34(5–6) (1984), 667729.CrossRefGoogle Scholar
Grama, I., Lauvergnat, R. and Le Page, É..): Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption. Ann. Probab. 46(4) (2018, 18071877.CrossRefGoogle Scholar
Grama, I., Lauvergnat, R. and Le Page, É., Conditioned local limit theorems for random walks defined on finite Markov chains. Probab. Theory Related Fields 176(1–2) (2020), 669735.CrossRefGoogle Scholar
Grama, I., Le Page, É. and Peigné, M.. Conditioned limit theorems for products of random matrices. Probab. Theory Related Fields 168(3–4) (2017), 601639.CrossRefGoogle Scholar
Grama, I. and Xiao, H.. Conditioned local limit theorems for random walks on the real line. Preprint, 2021, arXiv:2110.05123.Google Scholar
Haeusler, E.. An exact rate of convergence in the functional central limit theorem for special martingale difference arrays. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 65(4) (1984), 523534.CrossRefGoogle Scholar
Hasselblatt, B. and Katok, A.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1996.Google Scholar
Hennion, H. and Hervé, L.. Limit Theorems for Markov Chains and stochastic Properties of dynamical systems by quasi-compactness (Lecture Notes in Mathematics, 1766). Springer-Verlag, Berlin, 2001.CrossRefGoogle Scholar
Iglehart, D. L.. Random walks with negative drift conditioned to stay positive. J. Appl. Probab. 11(4) (1974), 742751.CrossRefGoogle Scholar
Kersting, G. and Vatutin, V.. Discrete Time Branching Processes in Random Environment. ISTE Limited, London, 2017.CrossRefGoogle Scholar
Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187(188) (1990), 1268.Google Scholar
Ratner, M.. The central limit theorem for geodesic flows one-dimensional manifolds of negative curvature. Israel J. Math. 16(2) (1973), 181197.CrossRefGoogle Scholar
Ruelle, D.. Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley Publishing Company, Reading, MA, 1978.Google Scholar
Sinai, Y. G.. The central limit theorem for geodesic flows on manifolds of constant negative curvature. Dokl. Akad. Nauk 133(6) (1960), 13031306.Google Scholar
Sinai, Y. G.. Gibbs measures in ergodic theory. Russian Math. Surveys 27(4) (1972), 2170.CrossRefGoogle Scholar
Spitzer, F.. Principles of random walk, 2nd edn. Springer, New York - Heidelberg, 1976.CrossRefGoogle Scholar
Varapoulos, N. T.. Potential theory in conical domains. Math. Proc. Cambridge Philos. Soc. 125 (1999), 335384.CrossRefGoogle Scholar
Varapoulos, N. T.. Potential theory in conical domains. II. Math. Proc. Cambridge Philos. Soc. 129 (2000), 301319.CrossRefGoogle Scholar
Vatutin, V. A. and Wachtel, V.. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143(1–2) (2009), 177217.CrossRefGoogle Scholar