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Abstract. Let (X, T ) be a subshift of finite type equipped with the Gibbs measure
ν and let f be a real-valued Hölder continuous function on X such that ν(f ) = 0.
Consider the Birkhoff sums Snf = ∑n−1

k=0 f ◦ T k , n � 1. For any t ∈ R, denote by τft
the first time when the sum t + Snf leaves the positive half-line for some n � 1. By
analogy with the case of random walks with independent and identically distributed
increments, we study the asymptotic as n → ∞ of the probabilities ν(x ∈ X : τft (x) > n)

and ν(x ∈ X : τft (x) = n). We also establish integral and local-type limit theorems for the
sum t + Snf (x) conditioned on the set {x ∈ X : τft (x) > n}.
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1. Statement of the results and motivation
1.1. Main results. Consider a subshift of finite type (X, T ) endowed with a Gibbs
measure ν and let f be a real-valued Hölder continuous function on X (the precise
definitions are given in §2). Define the Birkhoff sums

Snf = f + f ◦ T + · · · + f ◦ T n−1, n � 1.

A fundamental result of the theory of dynamical systems is the celebrated Birkhoff ergodic
theorem which asserts that ν-almost surely,

lim
n→∞

Snf

n
=

∫
X

f (x)ν(dx) =: ν(f ).

Much effort was made to establish another important property: the central limit theorem
for Snf . To formulate the corresponding statement, we first note that the following limit
exists:

σ 2
f = lim

n→∞
1
n

∫
X

(Snf − nν(f ))2 dν.

It is known that σ 2
f = 0 if and only if f is a coboundary with respect to T, which means

that there exists a Hölder continuous function g on X such that f (x) = g(T x)− g(x) for
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52 I. Grama et al

any x ∈ X. In the case when σf > 0 (or, equivalently, when f is not a coboundary) the
following central limit theorem holds: for any bounded continuous function F : R �→ R,

lim
n→∞

∫
X

F

(
Snf (x)− nν(f )

σf
√
n

)
ν(dx) = 1√

2π

∫
R

F(t)e−t2/2 dt . (1.1)

All these statements, which can be found in the excellent book of Parry and Pollicott
[24], are consequences of many successive works such as Sinai [27, 28], Ratner [25],
Ruelle [26] and Denker and Phillip [9], to cite only a few. The goal of this paper is to
complement the central limit theorem (1.1) by proving limit theorems for the Birkhoff
sum t + Snf under the condition that the trajectory (t + Skf )1�k�n stays positive, where
t ∈ R is a starting point.

There is a vast body of literature on the properties of conditioned random walks and
their applications based on independent observations: a brief historical foray into the
subject of conditioned limit theorems and our motivation are presented in §1.2. At this
point let us note that finding the corresponding asymptotics for Birkhoff sums encounters
major problems. One of them is related to the fact that Wiener–Hopf factorization
techniques do not apply in these settings. The other, and this is one of the main findings
of the paper, is that the asymptotic analysis requires the introduction of the new object, the
harmonic measure, which makes an important difference with the case of simple random
walks. Regarding potential applications, we note that counting for trajectories conditioned
to stay in some conic domains of Rd (for instance, the Weyl chamber) is of interest
in statistical physics, see Fisher [14]. Our study which deals with the one-dimensional
observable f is the first step in considering such problems, and open ways to cope also
with observables taking values in Rd .

To state our results assume that ν(f ) = 0 and that f is not a coboundary. For any t ∈ R,
the following exit time is finite for ν-almost every x ∈ X:

τ
f
t (x) := inf{k � 1 : t + Skf (x) < 0}.

Thus, by definition, {x ∈ X : τft (x) > n} is the set where the trajectory (t + Skf )1�k�n
stays non-negative, that is, t + Skf � 0 for 1 � k � n.

Our first theorem states the existence of a special Radon measure which will play a
central role in the paper and will be used in the formulations of the subsequent results.

THEOREM 1.1. Let f be a Hölder continuous function on X such that ν(f ) = 0 and f is not
a coboundary. Then, there exists a unique Radon measure μf on X × R such that for any
continuous compactly supported function ϕ on X × R,

lim
n→∞

∫
X×R

ϕ(x, t)Snf (x)1{τft (x)>n}ν(dx) dt =
∫
X×R

ϕ(x, t)μf (dx, dt). (1.2)

Moreover, the Radon measure μf satisfies the following quasi-invariance property: for
every continuous compactly supported function ϕ on X × R,∫

X×R

ϕ(x, t)μf (dx, dt) =
∫
X×R

ϕ(T −1x, t − f (T −1x))1{t�0}μf (dx, dt). (1.3)
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The limit (1.2) takes a simpler form when the function ϕ does not depend on the first
argument. Indeed, we show in §3.3 that the marginal of μf on R is absolutely continuous
with respect to the Lebesgue measure. Its density function is a non-decreasing function on
R that will be denoted by V f . In particular, by standard arguments, the asymptotic (1.2) is
valid for functions ϕ of the form ϕ(x, t) = 1[a,b](t) for x ∈ X and t ∈ R. This leads to the
following.

COROLLARY 1.2. Let f be a Hölder continuous function on X such that ν(f ) = 0 and f is
not a coboundary. Then, for any real numbers −∞ < a < b < ∞, we have

lim
n→∞

∫ b

a

∫
X

Snf (x)1{τft (x)>n}ν(dx) dt = μf (X × [a, b]) =
∫ b

a

V f (t) dt . (1.4)

Note that (1.2) and (1.4) are stated in integral forms with respect to t. It is an open ques-
tion whether it is possible to give an asymptotic of the integral

∫
X
Snf (x)1{τft (x)>n}ν(dx)

for a fixed value of t.
The Radon measure μf appearing in Theorem 1.1 will be called the harmonic measure

associated to the dynamical system (X, T , ν) with the observable f. The reason for this
is that the measure μf is related to the harmonicity property that appears in the study of
killed random walks on the half line. We refer to §3.3 for precise statements.

The following results describe the limit behavior of the Birkhoff sum t + Snf under
the condition that the trajectory (t + Skf )1�k�n stays non-negative. We start by giving
the equivalent of the probability that the trajectory (t + Skf )1�k�n stays non-negative.
Denote by μ̌f the harmonic measure related to the reversed dynamical system (X, T −1, ν)
with the observable f ◦ T −1.

THEOREM 1.3. Let f be a Hölder continuous function on X such that f is not a coboundary
and ν(f ) = 0. Then, for any continuous compactly supported function ϕ on X × R, we
have

lim
n→∞

σf
√

2πn
2

∫
X×R

ϕ(x, t)1{τft (x)>n}ν(dx) dt =
∫
X×R

ϕ(x, t)μf (dx, dt) (1.5)

and

lim
n→∞

σf
√

2πn
2

∫
X×R

ϕ(T nx, t + Snf (x))1{τft (x)>n}ν(dx) dt =
∫
X×R

ϕ(x, t)μ̌(−f )(dx, dt).

(1.6)

As the measure μf has absolutely continuous marginal on R, Theorem 1.3 also applies
to the function ϕ(x, t) = 1[a,b](t) for x ∈ X and t ∈ R. In particular, this gives the
following corollary.

COROLLARY 1.4. Let f be a Hölder continuous function on X such that f is not a
coboundary and ν(f ) = 0. Then, for any real numbers −∞ < a < b < ∞, we have

lim
n→∞

σf
√

2πn
2

∫ b

a

ν(x ∈ X : τft (x) > n) dt =
∫ b

a

V f (t) dt .
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Now we give a conditioned central limit theorem for the Birkhoff sum Snf , which states
that the law of Snf conditioned to stay positive converges weakly to the Rayleigh law. In
the following, we denote by φ+ and 	+ the Rayleigh density and cumulative distribution
functions, respectively:

φ+(u) = ue−u2/21{u�0}, 	+(u) = (1 − e−u2/2)1{u�0}, u ∈ R. (1.7)

THEOREM 1.5. Let f be a Hölder continuous function on X such that f is not a
coboundary and ν(f ) = 0. Then, for any continuous compactly supported function F on
X × X × R × R, we have

lim
n→∞

σf
√

2πn
2

∫
X×R

F

(
x, T nx, t ,

Snf (x)

σf
√
n

)
1{τft (x)>n}ν(dx) dt

=
∫
X×R

∫
X×R

F(x, x′, t , t ′)φ+(t ′)ν(dx′) dt ′μf (dx, dt).

As previously, we can actually apply Theorem 1.5 to the function F(x, x′, t , t ′) =
1[a,b](t)1[a′,b′](t ′) for x, x′ ∈ X and t , t ′ ∈ R. Therefore, this implies the following
corollary.

COROLLARY 1.6. Let f be a Hölder continuous function on X such that f is not a
coboundary and ν(f ) = 0. Then, for any real numbers −∞ < a < b < ∞ and −∞ <

a′ < b′ < ∞, we have

lim
n→∞

σf
√

2πn
2

∫ b

a

ν

(
x ∈ X :

Snf (x)

σf
√
n

∈ [a′, b′], τft (x) > n

)
dt

=
∫ b

a

V f (t) dt (	+(b′)−	+(a′)).

Next we formulate a conditioned local limit theorem for Snf , which is a refinement of
the previous result.

THEOREM 1.7. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume
that for any p 	= 0 and q ∈ R, the function pf + q is not cohomologous to a function with
values in Z. Then, for any continuous compactly supported function F on X × X × R × R,
we have

lim
n→∞

√
2πσ 3

f n
3/2

2

∫
X×R

F(x, T nx, t , t + Snf (x))1{τft (x)>n−1}ν(dx) dt

=
∫
X×R

∫
X×R

F(x, x′, t , t ′)μf (dx, dt)μ̌(−f )(dx′, dt ′). (1.8)

In Theorem 1.7, we assumed that the function f satisfies a non-arithmeticity condition.
When this is not the case but f is still not cohomologous to 0, we could still get an analogue
of this result by the same method.

In the particular case when the function F has the form F(x, x ′, t , t ′) = 1[a,b](t)

1[a′,b′](t ′) for x, x′ ∈ X and t , t ′ ∈ R, from the previous theorem we obtain the following.
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COROLLARY 1.8. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume
that for any p 	= 0 and q ∈ R, the function pf + q is not cohomologous to a function with
values in Z. Then, for any real numbers −∞ < a < b < ∞ and −∞ < a′ < b′ < ∞, we
have

lim
n→∞

√
2πσ 3

f n
3/2

2

∫ b

a

ν(x ∈ X : t + Snf (x) ∈ [a′, b′], τft (x) > n− 1) dt

=
∫ b

a

V f (t) dt

∫ b′

a′
V̌ (−f )(t ′) dt ′.

In this corollary we have denoted by V̌ (−f ) the density function with respect to the
Lebesgue measure of the marginal on R of the Radon measure μ̌(−f ).

From Corollary 1.8 we get a local limit theorem for τft (x). Indeed, by taking the interval
[a′, b′) to be [−c, 0) for c > 0 large enough, as f is bounded, we deduce the following.

COROLLARY 1.9. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume
that for any p 	= 0 and q ∈ R, the function pf + q is not cohomologous to a function with
values in Z. Then, for any real numbers −∞ < a < b < ∞, we have

lim
n→∞

√
2πσ 3

f n
3/2

2

∫ b

a

ν(x ∈ X : τft (x) = n) dt =
∫ b

a

V f (t) dt

∫ 0

−∞
V̌ (−f )(t ′) dt ′.

Our Corollary 1.9 could be extended without difficulties to the case when one only
assumes that f is not cohomologous to 0. This assertion could be deduced from a version
of Theorem 1.7 for functions f that are cohomologous to functions with values in a set of
the form αZ + β for some α, β ∈ R.

Similarly to the comment after Corollary 1.2, Theorems 1.3, 1.5 and 1.7 are stated in
integral forms with respect to t. It is an open problem to obtain asymptotics for a fixed
value of t ∈ R of the following probabilities:

ν(x ∈ X : τft (x) > n), ν(x ∈ X :
Snf (x)

σf
√
n

∈ [a′, b′], τft (x) > n),

ν(x ∈ X : Snf (x) ∈ [a′, b′], τft (x) > n).

Remark 1.10. In the previous theorems we have considered the two-sided subshift.
However, all the above results apply as well to the case of one-sided subshift. The latter is
a particular case of the two-sided one with a function f depending only on the future (or
on the past). Indeed, let (X+, T ) be the one-sided shift associated with X, ψ : X+ → R

be the potential of the Gibbs measures ν and the function f only depends on the future
coordinates in X. Then, for instance, the conclusions (1.2) and (1.3) of Theorem 1.1 may
be rewritten as follows: for any continuous compactly supported function ϕ on X+ × R,

lim
n→∞

∫
X+×R

ϕ(x, t)Snf (x)1{τft (x)>n}ν
+(dx) dt =

∫
X+×R

ϕ(x, t)μf+(dx, dt) (1.9)
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and∫
X+×R

ϕ(x, t)μf+(dx, dt) =
∫
X+×R

∑
Ty=x

e−ψ(y)ϕ(y, t − f (y))1{t�0}μf+(dx, dt),

(1.10)

where ν+ is the marginal of ν and μf+ is the marginal of μf on X+ × R. In Theorem 1.3,
in the case of a one-sided shift, the limit in the right-hand side of (1.6) exists. Nevertheless,
even if the function f depends only on future coordinates, in order to construct the marginal
of the measure μ̌(−f ), we need to work in the full shift X and to apply Theorem 1.1 to the
inverse map T −1. In the same way, in Theorem 1.7, the left-hand side of (1.8) makes sense
in a one-sided shift, but we need to use the two-sided shift in order to make sense of the
right-hand side. We refer to §§2.1 and 2.2 for more details about the relation between
one-sided and two-sided subshifts.

Due to the theory of Markov partitions (see Appendix III of [24] and Ch. 18.7 of [20]),
Theorems 1.1, 1.3, 1.5 and 1.7 can be applied without any changes to hyperbolic dynamical
systems. Finally, using the approach of this paper, one can obtain analogous results for
hyperbolic flows. The latter is beyond the scope of this article and will be done in another
work.

1.2. Previous work and motivation. The first examples of conditioned limit theorems
for sums of independent random variables are due to the pioneering work of Spitzer [29]
and Feller [13]. Since then integral and local limit theorems for random walks conditioned
to stay positive attracted a lot of attention. Very many authors contributed to this subject,
among them Borovkov [3–5], Bolthausen [2], Iglehart [22], Eppel [12], Bertoin and Doney
[1], Caravenna [6], Vatutin and Wachtel [32], Doney [10] and Kersting and Vatutin [23].
Most of this work is based on the Wiener–Hopf factorization and various factorization
identities. Varopoulos [30, 31], Eichelsbacher and König [11] and Denisov and Wachtel
[7, 8] have studied the setting of random walks in cones and have developed a new
approach for obtaining exact asymptotics based on the construction of a harmonic function
for a certain operator. This construction therefore avoids the use of the Wiener–Hopf
factorization. Following this method, in the case of dependent random variables recent
progress was made in [17, 15], where conditioned integral limit theorems for products
of random matrices and for Markov chains satisfying spectral gap properties have been
obtained. In [16] a conditioned local limit theorem for a Markov chain with finite state
space was considered.

As far as we know, conditioned integral and local limit theorems for Birkhoff sums have
not yet been considered in the literature. In establishing these results we encountered two
main difficulties.

The first is actually related with the statement of the conditioned limit theorems
themselves. In the case of Markov chain, the statement of results requires the use of the
corresponding harmonic function. In some cases, the subshift comes with an auxiliary
Markov chain and the statement of the conditioned central limit theorem can be deduced
from the Markov case. However, in general, to state the result for our dynamical system,
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we need a replacement for the harmonic function. Indeed, one of the major findings of the
paper is that, in the case for the subshift of finite type (X, T , ν) with a general Hölder
continuous observable f, a more general object, the harmonic measure μf , has to be
considered. The conditioned central limit theorem for the Birkhoff sum t + Snf is stated
in terms of the harmonic measure μf , whose use cannot be avoided and which constitutes
an essential characteristic of the model. The construction of μf is performed first for the
sum t + Snf with an observable f depending only on the past coordinates, which in the
reversed setting corresponds to studying a Markov chain. Then it is extended gradually to
a function f depending on the whole set of coordinates using smoothing techniques and a
vague convergence argument, see §3.

Once this construction is achieved we are able to adapt several statements from the
Markov chain case, such as the conditioned central limit theorem, to the dynamical system
setting. We were motivated by the previous developments in [15, 16] for the Markov
chains. To put it in a nutshell, we shall first establish the corresponding theorems for the
Birkhoff sum t + Snf with an observable f depending only on the future coordinates,
which corresponds to dealing with some Markov chain. Then we extend them to the general
case of subshifts of finite type, using the technique similar to that developed for the proof
of the existence of the harmonic measure.

The second difficulty is related to the proof of the corresponding conditioned local
limit theorem. For proving the conditioned local limit theorem in the case of finite Markov
chains [16] it is necessary to consider the reversed walk, which in this particular case is
again a Markov chain. For the subshift of finite type the situation is trickier, but can be
handled using the reversed subshift. Once the harmonic measure μf is constructed for any
Hölder continuous observable f, this construction can be applied to the reversed subshift
(X, T −1, ν) with observable −f ◦ T −1 yielding the reverse harmonic measure μ̌−f ,
which is necessary to state the conditioned local limit theorem. To prove the conditioned
local limit theorem we are able to patch up the two conditioned integral limit theorems for
the direct and reversed walks to establish a conditioned local limit theorem, where both
measures μf and μ̌−f will show up. We use the techniques from [7, 18] which deal with
random walks with independent increments.

In a perspective, it is possible to apply the developed approach for studying conditioned
local limit theorems for products of random matrices and more generally for Markov chains
with values in general state spaces, in contrast to [16] where a chain with finite state spaces
has been considered. This will be the subject of a forthcoming paper.

2. Background and auxiliary statements
2.1. Subshift of finite type and Gibbs measure. We start by precisely introducing the
subshift of finite type. Let k � 2 be an integer andA = {1, 2, . . . , k}. Let M be a transition
matrix on A, that is,M = (M(i, j))i,j∈A is a matrix with coefficients in {0, 1}. We assume
that the transition matrix M is aperiodic in the sense that there exists an integer p � 1
such that all the coefficients of the matrixMp are strictly positive. Consider the associated
subshift of finite type

X = {x = (xn)n∈Z ∈ AZ : M(xn, xn+1) = 1, n ∈ Z} ⊂ AZ,
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equipped with the shift map T defined by (T x)n = xn+1 for x ∈ X and n ∈ Z. The set
{1, 2, . . . , k} is equipped with the discrete topology, so the space AZ is compact with the
corresponding Tychonov product topology. We equip X with the induced topology, which
is also compact. For any x = (xn)n∈Z ∈ X and y = (yn)n∈Z ∈ X, define

ω(x, y) = min{k � 0 : xk 	= yk or x−k 	= y−k}.
Note that for any constant α ∈ (0, 1), the function (x, y) �→ αω(x,y) is a distance on X

which induces the natural product topology.
The space of real-valued continuous functions f : X → R is denoted by C(X). For any

function f ∈ C(X), we say that f is Hölder continuous on X if there exist constants C > 0
and α ∈ (0, 1) such that for all x, y ∈ X,

|f (x)− f (y)| � Cαω(x,y). (2.1)

For a fixed α ∈ (0, 1), denote by Bα the space of all real-valued functions on X satisfying
(2.1) for some constant C, equipped with the following norm

‖f ‖Bα
:= sup

x∈X
|f (x)| + sup

x,y∈X:x 	=y
|f (x)− f (y)|

αω(x,y) . (2.2)

The function dα : (x, y) �→ αω(x,y) is a distance on X, and Bα is the space of Lipschitz
continuous functions with respect to the distance dα . Note that the notion of Lipschitz
continuity depends on the index α, but the notion of Hölder continuity does not. It is
clear that the set of all real-valued Hölder continuous functions on X can be written as
B = ⋃

0<α<1 Bα .
For any f ∈ B, we consider the Birkhoff sum process (Snf )n�0 by setting S0f = 0

and

Snf = f + · · · + f ◦ T n−1, n � 1.

Let us denote by X+ ⊂ AN the set

X+ = {x = (xn)n∈N ∈ AN : M(xn, xn+1) = 1, n ∈ N} ⊂ AN.

The set of continuous functions on X+ is denoted by C(X+). By abuse of notation, the
one-sided shift map X+ �→ X+ will still be denoted by T.

The Ruelle operator Lf : C(X+) → C(X+) related to f ∈ C(X+) is defined as follows:
for any g ∈ C(X+),

Lf g(x) =
∑

y: Ty=x
e−f (y)g(y), x ∈ X+. (2.3)

One can easily see that Lf is a bounded linear operator on C(X+). From (2.3), by iteration,
it follows that for any n � 1,

Lnf g(x) =
∑

y: T ny=x
e−Snf (y)g(y), x ∈ X+.

In addition, if h ∈ C(X+), we have the conjugacy relation

Lf+h◦T−hg = e−hLf (ehg), (2.4)
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which tells us that the spectral properties of the transfer operator Lf only depend on the
cohomology class of f. We say that a real-valued and Hölder continuous function ψ on X+
is normalized if Lψ1 = 1. By [24, Ch. 2, Theorem 2.2], there exist a real-valued Hölder
continuous function h and a real number λ such that Lψeh = eλ+h. From the conjugacy
relation (2.4), this tells us that the function ψ − h ◦ T + h+ λ is also normalized.
Therefore, throughout the paper, we assume that ψ is normalized. In this case, it is
well known (e.g. [24]) that the adjoint operator L∗

ψ admits a unique invariant probability
measure ν+. The measure ν+ is called the Gibbs measure related to the potential ψ . As ψ
is normalized, the measure ν+ is T-invariant, that is, for any f ∈ C(X+),

ν+(f ◦ T ) = ν+(f ), (2.5)

see [24, Ch. 2].
Note that ν+ is also T-ergodic, meaning that any T-invariant Borel subset B of X+ has

ν+ measure 0 or 1:

T −1B = B ⇒ ν+(B) ∈ {0, 1}.
Thanks to the following lemma, the measure ν+ allows to define a T-invariant measure

on X.

LEMMA 2.1. Let ν+ be a Borel probability measure on X+ which is T-invariant. Then
there exists a unique T-invariant Borel probability measure ν on X such that the image of
ν under the natural projection map X → X+ is equal to ν+.

The proof of this lemma is just a consequence of Kolmogorov’s extension theorem. We
actually give an explicit formula for the measure ν in the following.

2.2. Conditional measures on the past. For any z ∈ X+, we shall construct a measure
ν−
z , which is the conditional measure of ν with respect to the map x ∈ X �→ x+ ∈ X+. To

this end, for any a ∈ A, let

X−
a = {y ∈ A−N

∗
: M(y−1, a) = 1, M(y−n−1, y−n) = 1, for all n � 1},

where M is the transition matrix on the set A which was used to define the finite-type
subshift X ⊂ AZ. For any z ∈ X+, we set X−

z = X−
z0

, where z0 is the first coordinate of
z ∈ X+. We have the decomposition

X =
⋃
z∈X+

X−
z × {z}.

The point z may be thought of as the future of the trajectory whereas the elements of X−
z

describe the pasts which are compatible with this future. Let us introduce some notation
related to this decomposition. For any z ∈ X+ and y ∈ X−

z , we denote y · z = (y, z) ∈ X.
For z ∈ X+ and k � 1, we set

Akz = {(y−k , . . . , y−1) ∈ A{−k,...,−1} :

M(y−1, z0) = 1, M(y−n−1, y−n) = 1, for all 1 � n � k − 1}.

https://doi.org/10.1017/etds.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.15


60 I. Grama et al

For (y−k , . . . , y−1) ∈ Akz , we set y−k . . . y−1 · z to be the element w ∈ X+ defined by

wn =
{
yn−k if 0 � n � k − 1,

zn−k if n � k.

For a ∈ Akz , let

Ca,z = {y ∈ X−
z : y−k = a−k , . . . , y−1 = a−1} (2.6)

be the associated cylinder of length k in X−
z .

Recall that the two-sided shift map T : X → X and its inverse T −1 are defined by
(T x)n = xn+1 and (T −1x)n = xn−1 for any x ∈ X and n ∈ Z. By abuse of notation,
the one-sided forward shift map will be denoted by T : X+ �→ X+ and is defined by
T (x) = (x1, x2, x3, . . .), for any x = (x0, x1, x2, . . .) ∈ X+. Let us define conditional
measures on the past of trajectories. For k � 0, define νkz as a function on cylinders of
length k in X−

z by the formula

νkz (Ca,z) = exp(−Skψ(a · z)), (2.7)

for a ∈ Akz . As Lψ1 = 1, we have that for any a ∈ Akz ,
νkz (Ca,z) =

∑
b∈A

M(b,a−k)=1

νk+1
z (Cb·a,z). (2.8)

By Kolmogorov’s extension theorem, from equation (2.8) it follows that there exists a
unique Borel probability measure ν−

z on X−
z such that for any k � 0, νkz is the restriction

of ν−
z to cylinders of length k.

We can now give an explicit formula for the measure ν in terms of the measures ν+
and ν−

z .

LEMMA 2.2. Let ϕ ∈ C(X). Then we have

ν(ϕ) =
∫
X+

∫
X

−
z

ϕ(y · z)ν−
z (dy)ν

+(dz).

Proof. By Lemma 2.1, it suffices to prove that the measure ν on X defined by the above
equation is T-invariant. This property is a direct consequence of the definition of the
measures ν−

z , z ∈ X+, and of the fact that ν+ is Lψ -invariant.

We use the fact that the measures ν−
z and ν−

z′ are equivalent.

LEMMA 2.3. There exists a real-valued continuous function θ on the set

X3 := {(y, z, z′) ∈ A−N
∗ × X+ × X+ : z0 = z′0, y ∈ X−

z = X−
z′ }

such that for any z, z′ ∈ X+ and any continuous function ϕ on X−
z , one has∫

X
−
z

ϕ(y)ν−
z′ (dy) =

∫
X

−
z

ϕ(y)eθ(y,z,z′)ν−
z (dy).
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In addition, there exists a constant c > 0 such that for any (y, z, z′) ∈ X3,

|θ(y, z, z′)| � cαω(z,z
′).

Proof. Indeed, it suffices to set

θ(y, z, z′) =
∞∑
k=1

(ψ(T −k(y · z))− ψ(T −k(y · z′))).

2.3. General properties of exit times. From the following lemma it follows that the
function x �→ τ

f
t (x) is finite ν-almost surely.

LEMMA 2.4. Let f ∈ B with ν(f ) = 0. Assume that f is not a coboundary. Then for
ν-almost every x ∈ X, one has

inf
n�1

Snf (x) = −∞.

Proof. Consider the Borel set

A = {
x ∈ X : inf

n�1
Snf (x) > −∞}

.

It is clear that the set A is T-invariant. Therefore, ν(A) = 0 or ν(A) = 1. Assume that
ν(A) = 1, then let us show that f is a coboundary. Indeed, for any x ∈ A, we have that
h(x) := lim infn→∞ Snf (x) > −∞. As ν(f ) = 0, it is well known that Snf (x) admits
finite limit points for ν-almost every x ∈ X, so that h(x) < ∞. Now, by definition, we have
h(T x) = h(x)− f (x), hence f is a coboundary as a measurable function on X. Therefore,
by [24, Proposition 6.2], we get that f is a coboundary as a Hölder continuous function
on X.

For notational reasons, it is more convenient to study objects defined by the reverse shift
T −1. Note that the two studies are equivalent.

Indeed, let us define the flip map ι : AZ → AZ by the following relation: for any
x = (. . . , x−1, x0, x1, . . .) ∈ AZ it holds ι(x) = (. . . , x1, x0, x−1, . . .) ∈ AZ, that is
(ιx)n = x−n for n ∈ Z. The following lemma is classical (see [24, Ch. 2]).

LEMMA 2.5. The set ιX is a subshift of finite type and the measure ι∗ν is a Gibbs measure
on ιX.

For f ∈ B, consider the reversed Birkhoff sum process (Šnf )n�1 which is defined as
follows: for any x ∈ X,

Šnf (x) = f (T −1x)+ f (T −2x)+ · · · + f (T −nx) = Snf (T
−nx), n � 1.

In the same way, denote by τ̌ ft (x) the first time when t + Šnf (x) becomes negative: for
any x ∈ X,

τ̌
f
t (x) := inf{k � 1, t + Škf (x) < 0}. (2.9)

Then the relation between the exit times τft and τ̌ f ◦ι
t is given by

τ
f
t (T x) = τ̌

f ◦ι
t (ιx), x ∈ X.
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In the present paper we deal with the measure

ν(x ∈ X : τft (x) > n) (2.10)

which, by the previous discussion, is equivalent to studying the measure

ν(x ∈ X : τ̌ ft (x) > n). (2.11)

In turn, Lemma 2.2 shows that in order to study (2.11), it suffices to investigate

ν−
z (y ∈ X−

z : τ̌ ft (y · z) > n), (2.12)

for z ∈ X+. We do it by using tools from the theory of Markov chains [15]. In particular,
we make use of the martingale approximation for the process (Šnf )n�1.

2.4. Martingale approximation. Recall that B = ⋃
0<α<1 Bα , where Bα is the space

of real-valued α-Hölder continuous functions on X endowed with the norm (2.2). In the
same way, we denote by B+

α the space of real-valued α-Hölder continuous functions on
X+ endowed with the norm

‖f ‖B+
α

:= sup
x∈X+

|f (x)| + sup
x,y∈X+:x 	=y

|f (x)− f (y)|
αω(x,y) .

Let B+ = ⋃
0<α<1 B+

α . Note that every Hölder continuous function f on X+ can be
extended to a Hölder continuous function on X defined by

x = (. . . , x−1, x0, x1, . . .) ∈ X �→ f (x0, x1, . . .),

so we can identify B+ with a subspace of B.
Let f ∈ B. Define the cohomology class of f as the following set of Hölder continuous

functions:

C(f ) = {f0 ∈ B | f0 = f − h ◦ T + h, h ∈ B}.
The following proposition tells us that there exists a natural choice in C(f ).

PROPOSITION 2.6. Let f ∈ B be such that ν(f ) = 0. Then there exists a unique function
f0 ∈ B+ such that Lψf0 = 0 and its extension on X belongs to C(f ).

Proof. First we prove the existence of f0. By Proposition 1.2 in [24], there exists a Hölder
continuous function g on X+, whose extension to X is cohomologous to f. As ν(f ) = 0,
we have ν+(g) = 0. Now we choose α ∈ (0, 1) close enough to 1 so that Lψ is bounded
on Bα and g ∈ Bα . By the spectral gap property for the operator Lψ (see Theorem 2.2 of
[24]), there exists a Hölder continuous function h ∈ Bα such that

h− Lψh = Lψg. (2.13)

As h = hLψ1 = Lψ(h ◦ T ), it follows that

Lψ(g − h ◦ T + h) = 0.

Hence, there exists a function f0 := g − h ◦ T + h ∈ C(f ) satisfying Lψf0 = 0.
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Now we prove the uniqueness of f0. Suppose that there exist f0, f ′
0 ∈ C(f ) such that

Lψf0 = Lψf ′
0 = 0. Then f0 − f ′

0 is a coboundary, namely, there exists h1 ∈ B such that
f0 − f ′

0 = h1 ◦ T − h1. As f0 and f ′
0 depend only on the future coordinates, it is well

known that h1 depends only on the future coordinates. It follows that Lψ(h1 ◦ T − h1) = 0
and, hence, Lψh1 = h1. This implies that h1 is a constant and, therefore, f ′

0 = f0.

For any z ∈ X+, we have defined a probability measure ν−
z on the set X−

z ⊂ A−N
∗

of
past sequences which are compatible with z. For n � 1, we let Fn denote the σ -algebra of
subsets of A−N

∗
generated by the coordinate maps y �→ (y−1, . . . , y−n). By convention,

we also define F0 as the trivial σ -algebra. We let Fz
n be the σ -algebra induced on X−

z .
The following proposition is a classical result from [24]:

PROPOSITION 2.7. Let f0 ∈ C(X+). Then Lψf0 = 0 if and only if for any z ∈ X+, the
sequence of random variables

y ∈ X−
z �→ Šnf0(y · z), n � 0

is a martingale on X−
z equipped with the probability measure ν−

z with respect to the
filtration (Fz

n)n�0.

Proof. Denote by gzn : X−
z → R the function y �→ Šnf0(y · z). Then for y ∈ X−

z and
n � 1, we have by the definition of the measure ν−

z ,

ν−
z (g

z
n | Fz

n−1)(y) = gzn−1(y)+ Lψf0(T
−n(y · z)).

From this identity, the assertion follows.

The following result shows that the difference Šnf − Šng is bounded, for f and g in the
same cohomology class.

LEMMA 2.8. Let f ∈ B and g ∈ C(f ). Let h ∈ B be such that f − g = h ◦ T − h. Then,
for any x ∈ X and any n � 1, we have

|Šnf (x)− Šng(x)| � c = 2‖h‖∞.

Proof. Indeed, we have Snf − Sng = h ◦ T n − h. As Šnf = (Snf ) ◦ T −n, we obtain
Šnf − Šng = h− h ◦ T −n, which proves the assertion.

2.5. The Hölder continuity and approximation. We establish several technical results
which will be used in the proofs of the main results of the paper. In particular, they allow
us to prove that several convergences hold uniformly in z ∈ X+.

LEMMA 2.9. For any g ∈ B, there exist constants α ∈ (0, 1) and c0 > 0 such that for any
n � 1, z, z′ ∈ X+ with z0 = z′0 and y ∈ X−

z (= X−
z′ ), one has

|Šng(y · z)− Šng(y · z′)| � c0α
ω(z,z′). (2.14)
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In particular, for any g ∈ B, there exists a constant c0 > 0 such that for any n � 1,
z, z′ ∈ X+ with z0 = z′0 and y ∈ X−

z (= X−
z′ ), it holds

Šng(y · z) � Šng(y · z′)+ c0.

Proof. As g ∈ B, there exists a constant Lg such that for any x, x′ ∈ X,

|g(x)− g(x′)| � Lgα
ω(x,x′),

where 0 < α < 1. Hence, for any z, z′ ∈ X+ with z0 = z′0 and y ∈ X−
z , and n � 1, one has

|Šng(y · z)− Šng(y · z′)| �
n−1∑
k=0

Lgα
n−k+ω(z,z′)

� Lg
α1+ω(z,z′)

1 − α
=: c0α

w(z,z′).

The desired result follows.

COROLLARY 2.10. For any g ∈ B, there exist constants α ∈ (0, 1) and c0 > 0 such that
for any n � 1, z, z′ ∈ X+ with z0 = z′0 and y ∈ X−

z (= X−
z′ ), we have∣∣ min

1�j�n
Šj g(y · z)− min

1�j�n
Šj g(y · z′)∣∣ � c0α

w(z,z′). (2.15)

Proof. By Lemma 2.9, there exist constants c0 > 0 and α ∈ (0, 1) such that for any
n � j � 1,

min
1�j�n

Šj g(y · z) � Šj g(y · z) � Šj g(y · z′)+ c0α
w(z,z′).

Taking the minimum over 1 � j � n on the right-hand side, we get

min
1�j�n

Šj g(y · z) � min
1�j�n

Šj g(y · z′)+ c0α
w(z,z′). (2.16)

In the same way, again by Lemma 2.9, there exist constants c0 > 0 and α ∈ (0, 1) such
that for any n � j � 1,

Šj g(y · z) � Šj g(y · z′)− c0α
w(z,z′) � min

1�j�n
Šj g(y · z′)− c0α

w(z,z′).

Taking the minimum over 1 � j � n on the left-hand side, we get

min
1�j�n

Šj g(y · z) � min
1�j�n

Šj g(y · z′)− c0α
w(z,z′). (2.17)

Combining (2.16) and (2.17), we conclude the proof of (2.15).

We also need the following technical lemma that allows us to approximate the function
g ∈ B by a function x �→ gm(x) on X which only depends on the coordinates {xk}k�−m.

LEMMA 2.11. Let g ∈ B. Then there exist constants α ∈ (0, 1), c1 > 0 and a sequence
of Hölder continuous functions (gm)m�0 on X which only depend on the coordinates
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{xk}k�−m such that Lψg0 = 0 and for any m � 0,

sup
n�1

‖Šngm − Šng‖∞ � c1α
m. (2.18)

Proof. By Proposition 2.6, there exist g0 ∈ B+ and h ∈ B with Lψg0 = 0 and

g0 = g − h ◦ T + h. (2.19)

As h ∈ B, there is α ∈ (0, 1) such that h ∈ Bα . Then, for anym � 0, there exists a Hölder
continuous function hm on X which only depends on the coordinates {xk}k�−m such that

‖h− hm‖∞ � c1α
m, (2.20)

where c1 > 0 is a fixed constant not depending on m and, by convention, h0 = 0. We define
for any m � 0,

gm = g0 + hm ◦ T − hm. (2.21)

From (2.19), (2.20) and (2.21), we get (2.18).

2.6. Duality. The next duality property is crucial in the proof of the main results.

LEMMA 2.12. Let g ∈ B. For any n � 1 and any non-negative measurable function F :
X × R × X × R → R, we have∫

R

∫
X

F(x, t , T −nx, t + Šng(x))1{τ̌ gt (x)>n−1}ν(dx) dt

=
∫
R

∫
X

F(T nx, u− Sng(x), x, u)1{τ−g
u (x)>n−1}ν(dx) du.

Proof. By a change of variable t = u− Šng(x), it follows that

I : =
∫
R

∫
X

F(x, t , T −nx, t + Šng(x))1{t+Šn−1g(x)�0,...,t+Š1g(x)�0}ν(dx) dt

=
∫
R

∫
X

F(x, u− Šng(x), T −nx, u)

× 1{u−g(T −nx)�0,...,u−g(T −nx)−...−g(T −2x)�0}ν(dx) du.

As the measure ν is T −1-invariant, we obtain

I =
∫
R

∫
X

F(T nx, u− Sng(x), x, u)1{u−S1g(x)�0,...,u−Sn−1g(x)�0}ν(dx) du,

which ends the proof of the lemma.

3. Harmonicity for dynamical system
3.1. Existence of the harmonic function. The aim of this section is to prove the existence
of a function V f on the state space R which we call the harmonic function of f by analogy
with the theory developed for Markov chains in [15]. Our main result is the following
theorem.
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THEOREM 3.1. Let f be a Hölder continuous function on X such that f is not a coboundary
and ν(f ) = 0. Then there exists a unique non-decreasing and right continuous function
V f : R → R+ such that for any continuous compactly supported function ϕ on R,

lim
n→∞

∫
R

ϕ(t)

∫
X

Snf (x)1{τft (x)>n}ν(dx) dt =
∫
R

ϕ(t)V f (t) dt . (3.1)

In addition, there exists a constant c > 0 such that for any t ∈ R,

max{t − c, 0} � V f (t) � max{t , 0} + c. (3.2)

Note that the bound (3.2) implies that V f (t)/t → 1 as t → ∞.
The proof of Theorem 3.1 is given at the end of this section. At this point, we start by

giving an explicit formula for the harmonic function in the case where the observable
only depends on future coordinates. Let g ∈ B+ with ν(g) = 0 and assume that g is
not a coboundary. Let g0 be the unique element of B+ such that Lψg0 = 0 and g0 is
cohomologous to g, as in Proposition 2.6. For z ∈ X+ and t ∈ R, we set

V̌ g(z, t) = −
∫
X

−
z

Šτ̌ gt (y·z)g0(y · z)ν−
z (dy). (3.3)

This integral makes sense. Indeed, first, by Lemma 3.3, the stopping time y �→ τ̌
g
t (y · z)

is finite ν−
z -almost everywhere. Second, the Birkhoff sum t + Šτ̌ gt (y·z)g(y · z) takes values

in the interval [−‖g‖∞, 0] when t is non-negative, and in the interval [t − ‖g‖∞, 0] when
t is negative. Third, by Lemma 2.8, the difference of the Birkhoff sums for g and g0 is
uniformly bounded.

The function V̌ g(z, ·) plays a crucial role in proving conditioned limit theorems for
products of random matrices and more generally for Markov chains, see [15, 17]. From the
results of [15] it follows that V̌ g(z, ·) has the following harmonicity property.

LEMMA 3.2. Let g be in B+ such that ν+(g) = 0 and g is not a coboundary. Then for
any (z, t) ∈ X+ × R, we have

V̌ g(z, t) =
∑

z′∈X+:T (z′)=z
e−ψ(z′)1{t+g(z′)�0}V̌ g(z′, t + g(z′)). (3.4)

The proof of the existence of the harmonic function V̌ g given in [15] is rather difficult.
In the case of the subshift of finite type (because the jumps are bounded) it is possible to
give a much shorter direct proof, which is not included because of the space limitations.

We extend the definition of V̌ g(z, ·) to the case of any function g ∈ B, that is, the
case of a function g that depends on both the past and the future coordinates. We use the
following technical assertion.

LEMMA 3.3. Let g ∈ B such that ν(g) = 0 and g is not a coboundary with respect to T.
Then, for any t ∈ R, it holds uniformly in z ∈ X+ that

lim
n→∞ ν−

z (y ∈ X−
z : τ̌ gt (y · z) > n) = 0.

Proof. Let c0 > 0 be as in Lemma 2.9. By Lemma 2.4 and Fubini’s theorem, for any
a ∈ A, we can find z′ ∈ X+ such that z′0 = a and the function y �→ τ̌

g
t+c0

(y · z′) on X−
z′ is

finite ν−
z′ -almost everywhere. Then for any z ∈ X+ with z0 = a, we have
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{y ∈ X−
z : τ̌ gt (y · z) > n} ⊆ {y ∈ X−

z′ : τ̌ gt+c0
(y · z′) > n}.

From Lemma 2.3, we get that for some constant c > 0,

ν−
z (y ∈ X−

z : τ̌ gt (y · z) > n) � cν−
z′ (y ∈ X−

z′ : τ̌ gt+c0
(y · z′)).

Thus, the lemma follows from the fact that ν−
z′ (y ∈ X−

z′ : τ̌ gt+c0
(y · z′) > n) converges to 0

as n → ∞.

Now we give an alternative definition of the function V̌ g(z, ·) for g ∈ B+, where the
key point is that in this case, the function y �→ τ̌

g
t (y · z) is a stopping time with respect to

the filtration {Fz
k}k�0.

LEMMA 3.4. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Let g0 be
the unique element of B+ such that Lψ(g0) = 0 and g0 is cohomologous to g. Then, for
any t ∈ R, we have, uniformly in z ∈ X+,

V̌ g(z, t) = lim
n→∞

∫
X

−
z

(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

= lim
n→∞

∫
X

−
z

Šng0(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy). (3.5)

In addition, there is a constant c > 0 such that, for any z ∈ X+, t ∈ R and n � 1,∫
X

−
z

Šng(y · z)1{
τ̌
g
t (y·z)>n

}ν−
z (dy) � max{t , 0} + c, (3.6)

for any z ∈ X+ and t ∈ R+,

t − c � V̌ g(z, t) � t + c, (3.7)

and for any z ∈ X+ and t < −c, it holds that V̌ g0(z, t) = 0.
Moreover, for any z ∈ X+, the function V̌ g(z, ·) is non-decreasing on R.

Proof. As g is cohomologous to g0, by Lemma 2.8, all Birkhoff sums Šng(y · z) stay
at bounded distance from the Birkhoff sums Šng0(y · z). Therefore, one can deal with
Šng0(y · z) instead of Šng(y · z). By the optional stopping theorem, for any n � 1,∫

X
−
z

Šng0(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy)

=
∫
X

−
z

Šng0(y · z)ν−
z (dy)−

∫
X

−
z

Šng0(y · z)1{τ̌ gt (y·z)�n}ν
−
z (dy)

= −
∫
X

−
z

Šτ̌ gt (y·z)g0(y · z)1{τ̌ gt (y·z)�n}ν
−
z (dy).

The bound (3.6) follows because t + Šτ̌ gt (y·z)g0(y · z) is bounded from below, because

t + Šτ̌ gt (y·z)−1g(y · z) � 0 and g is bounded.

Note that, as t + Šτ̌ gt (y·z)g(y · z) < 0, the quantity t + Šτ̌ gt (y·z)g0(y · z) is also bounded
from above. Therefore, by Lemma 3.3, we obtain (3.5) uniformly in z ∈ X+.
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Still because the function y �→ t + Šτ̌ gt (y·z)g0(y · z) is uniformly bounded, we get

V̌ g(z, t) ∈ [t − c, t + c], for some constant c > 0. In addition, if t < −‖g‖∞, we get
τ̌
g
t (y · z) = 1 everywhere for all z ∈ X+; thus, by (2.7) and (2.3) we have

V̌ g(z, t) =
∫
A1
z

(g0(y−1 · z))ν1
z (dy−1) = Lψ(g0)(z) = 0.

It remains to prove the monotonicity of t �→ V̌ g(z, t). As τ̌ gt1 � τ̌
g
t2

for any t1 � t2, and
t2 + Šng � 0 on the set {τ̌ gt2 > n}, it follows that∫

X
−
z

(t1 + Šng(y · z))1{τ̌ gt1 (y·z)>n}ν
−
z (dy)

�
∫
X

−
z

(t2 + Šng(y · z))1{τ̌ gt2 (y·z)>n}ν
−
z (dy).

Letting n → ∞ yields that the function V̌ g(z, ·) is non-decreasing on R.

By using Lemma 3.4, we can now give a definition of V̌ g for a function g only depending
on finitely many negative coordinates.

LEMMA 3.5. Let g ∈ B such that ν(g) = 0 and g is not a coboundary. Assume that g
only depends on m negative coordinates for some m � 0, in other words, that the function
h = g ◦ tm belongs to B+. Then, for any t ∈ R, we have uniformly in z ∈ X+,

lim
n→∞

∫
X

−
z

Šng(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy) = Lmψ(V̌ h(·, t))(z).

Let g and h be as in Lemma 3.5. We set for z ∈ X+ and t ∈ R,

V̌ g(z, t) = Lmψ(V̌ h(·, t))(z).
Lemma 3.5 implies that this notation is coherent with that introduced in (3.3).

Proof of Lemma 3.5. By conditioning over the m first coordinates of y, we get, for n � 0,∫
X

−
z

Šng(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šng((y · a) · z)1{τ̌ gt ((y·a)·z)>n}ν

−
a·z(dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šnh(T

−m(y · a) · z)1{τ̌ h◦T−m
t ((y·a)·z)>n}ν

−
a·z(dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šnh(y · (a · z))1{τ̌ ht (y·(a·z))>n}ν

−
a·z(dy),

where we have used the relations (y · a) · z = T m(y · (a · z)) and τ̌ h◦T −m
t = τ̌ ht ◦ T −m.

The conclusion now follows from Lemma 3.4 and the definition of the transfer operator
Lmψ .
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We prove that the convergence in Lemma 3.5 holds in a weak sense for every function
g ∈ B. The key step to prove Theorem 3.1 is the following technical lemma which shows
that the convergence of Lemma 3.5 holds for all functions g ∈ B in a weak sense.

LEMMA 3.6. Assume that g ∈ B is not a coboundary with respect to T and ν(g) = 0.
Then, for any continuous compactly supported function ϕ on R, uniformly in z ∈ X+, the
following limit exists and is finite:

lim
n→∞

∫
R

ϕ(t)

∫
X

−
z

Šng(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt .

Proof. Assume that g ∈ B. Let (gm)m�0, c1 > 0 and α ∈ (0, 1) be as in Lemma 2.11. Set

Wn(z, t) =
∫
X

−
z

(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

and

Wn,m(z, t) =
∫
X

−
z

(t + Šngm(y · z))1{τ̌ gmt (y·z)>n}ν
−
z (dy).

By (2.18), we have the inclusions

{τ̌ gmt−2c1αm
> n} ⊆ {τ̌ gt > n} ⊆ {τ̌ gmt+2c1αm

> n},
which imply that

Wn,m(z, t − 2c1α
m) � Wn(z, t) � Wn,m(z, t + 2c1α

m). (3.8)

In the same way, we have

Wn,m(z, t) � Wn,0(z, t + 2c1) � max{t , 0} + c2, (3.9)

where the last bound follows from (3.6).
By Lemma 3.5, for fixed m � 0, as n → ∞, the function Wn,m(z, t) converges to

V̌ gm(z, t), uniformly in z ∈ X+. From (3.8) we get

V̌ gm(z, t − 2c1α
m) � lim inf

n→∞ Wn(z, t) � lim sup
n→∞

Wn(z, t) � V̌ gm(z, t + 2c1α
m).

Now we have ∫
R

ϕ(t)[V̌ gm(z, t + 2c1α
m)− V̌ gm(z, t − 2c1α

m)] dt

=
∫
R

[ϕ(t − 2c1α
m)− ϕ(t + 2c1α

m)]V̌ gm(z, t) dt .

Using (3.9) and Lemma 3.5, we have that V̌ gm(z, t) � c2 + max{t , 0}. As ϕ is continuous
on R with compact support, by the Lebesgue-dominated convergence theorem, we get that
uniformly in z ∈ X+,

lim
m→∞

∫
R

ϕ(t)[V̌ gm(z, t + 2c1α
m)− V̌ gm(z, t − 2c1α

m)] dt = 0.

This tells us that
∫
R
ϕ(t)Wn(z, t) dt has a uniform limit as n → ∞.
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We use the previous lemma to build a function V̌ g(z, t). The existence of this function
will be deduced from the following elementary fact from the theory of distributions.

LEMMA 3.7. Let (Vn)n�1 be a sequence of non-decreasing functions on R. Assume that
for every continuous compactly supported function ϕ on R, the sequence

∫
R
Vn(t)ϕ(t) dt

admits a finite limit. Then there exists a unique right continuous and non-decreasing
function V on R such that for any continuous compactly supported function ϕ, we have

lim
n→∞

∫
R

Vn(t)ϕ(t) dt =
∫
R

V (t)ϕ(t) dt .

Now we construct the function V̌ g(z, t) for any g ∈ B.

LEMMA 3.8. Assume that g ∈ B is not a coboundary with respect to T and ν(g) = 0.
Then, for any z ∈ X+, there exists a unique non-decreasing and right continuous function
V̌ g(z, ·) on R such that the following hold.
(1) For any continuous compactly supported function ϕ on R, uniformly in z ∈ X+,

lim
n→∞

∫
R

ϕ(t)

∫
X

−
z

Šng(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt =

∫
R

ϕ(t)V̌ g(z, t) dt . (3.10)

(2) For any continuous compactly supported function ϕ on R, the mapping
z �→ ∫

R
ϕ(t)V̌ g(z, t) dt is continuous on X+.

(3) There exists a constant c > 0 such that for any z ∈ X+ and t ∈ R+,

t − c � V̌ g(z, t) � t + c. (3.11)

In addition, for any z ∈ X+ and t � −c, we have V̌ g(z, t) = 0.

By Lemma 3.4, in the case g ∈ B+, the notation V̌ g(z, ·) is coherent with that in (3.3).

Proof of Lemma 3.8. Fix z ∈ X+. By Lemmas 3.3 and 3.6, the following limit exists: for
any continuous compactly supported function ϕ on R,

lim
n→∞

∫
R

ϕ(t)

∫
X

−
z

(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt . (3.12)

For t ∈ R, set

V̌
g
n (z, t) =

∫
X

−
z

(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy). (3.13)

Then the function V̌ gn (z, ·) is non-decreasing on R. By Lemma 3.7, there exists a unique
non-decreasing and right continuous function V̌ g(z, ·) on R such that for any continuous
function ϕ on R with compact support,

lim
n→∞

∫
R

V̌
g
n (z, t)ϕ(t) dt =

∫
R

V̌ g(z, t)ϕ(t) dt .

Note that for t < −‖g‖∞, we have τ̌
g
t = 1 everywhere. Hence, V̌ g(z, t) = 0 for

t � −c.
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We now prove (3.11). By Proposition 2.6, there exists g0 ∈ B+ such that Lψ(g0) = 0
and g is cohomologous to g0. By Lemma 2.11, we can choose a constant c > 0 large enough
such that for any n � 1, it holds that ‖Šng − Šng0‖∞ � c. By Lemmas 3.3 and 3.6, we
have, for any continuous non-negative function ϕ on R with compact support,

lim
n→∞

∫
R

ϕ(t)

∫
X

−
z

(t + c + Šng0(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt =

∫
R

V̌ g(z, t)ϕ(t) dt .

Note that from Lemma 3.3, we have ν−
z (y ∈ X−

z : τ̌ gt (y · z) > n) → 0 as n → ∞. As we
have the following inclusion: for any t ∈ R,

{τ̌ g0
t−c > n} ⊂ {τ̌ gt > n} ⊂ {τ̌ g0

t+c > n},
and as t + c + Šng0 � 0 on the set {τ̌ g0

t+c > n}, we obtain∫
R

V̌ g0(z, t − c)ϕ(t) dt �
∫
R

V̌ g(z, t)ϕ(t) dt �
∫
R

V̌ g0(z, t + c)ϕ(t) dt .

As this holds for any continuous non-negative test function ϕ on R, we obtain

V̌ g0(z, t − c) � V̌ g(z, t) � V̌ g0(z, t + c). (3.14)

This, together with Lemma 3.7, concludes the proof of (3.11).
We now want to prove the continuity in z ∈ X+ of the function z �→ ∫

R
ϕ(t)V̌ g(z, t) dt .

To this aim, we establish a uniform bound for the quantity V̌ gn (z, t) defined in (3.13).
Indeed, as usual, we have V̌ gn (z, t) � V̌

g0
n (z, t + c). Now the optional stopping theorem

gives

V̌
g0
n (z, t) = tν−

z (y ∈ X−
z : τ̌ g0

t (y · z) > n)

−
∫
X

−
z

Š
τ̌
g0
t (y·z)g0(y · z)1{τ̌ g0

t (y·z)�n}ν
−
z (dy)

� |t | + |t | + ‖g0‖∞ = 2|t | + ‖g0‖∞.

From (3.14) we get

V̌
g
n (z, t) � 2|t | + 2c + ‖g0‖∞. (3.15)

It remains to prove that for any continuous compactly supported function ϕ on R, the
mapping z �→ ∫

R
ϕ(t)V̌ g(z, t) dt is continuous on X+. It suffices to prove that for any

n � 1, the mapping z �→ ∫
R
ϕ(t)V̌

g
n (z, t) dt is continuous on X+.

A priori, for fixed t ∈ R, the function z �→ V̌
g
n (z, t) is not continuous. Nevertheless, we

claim that it satisfies the following weak continuity property: for ε > 0, there exists k ∈ N

such that for any z, z′ ∈ X+ with w(z, z′) � k we have

V̌
g
n (z, t − ε) � V̌

g
n (z

′, t) � V̌
g
n (z, t + ε).

Indeed, this follows from the inequality (2.14) in Lemma 2.9. This, together with the
bound (3.15) and the uniform continuity of the function ϕ, implies that the mapping
z �→ ∫

R
ϕ(t)V̌

g
n (z, t) dt is continuous on X+.

The previous statements can be summarized as follows.
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THEOREM 3.9. Let g be a Hölder continuous function on X such that ν(g) = 0 and g is
not a coboundary. Then there exists a unique non-decreasing and right continuous function
V̌ g : R → R+ with the following properties.
(1) For any continuous compactly supported function ϕ on R,

lim
n→∞

∫
R

ϕ(t)

∫
X

Šng(x)1{τ̌ gt (x)>n}ν(dx) dt =
∫
R

ϕ(t)V̌ g(t) dt . (3.16)

(2) There exists a constant c > 0 such that for any t ∈ R it holds

max{t − c, 0} � V̌ g(t) � max{t , 0} + c. (3.17)

Proof. Let g ∈ B. For t ∈ R, we set

V̌ g(t) =
∫
X+
V̌ g(z, t)ν+(dz).

Then the points (1) and (2) of Theorem 3.9 follow from (3.10) and (3.11) in Lemma 3.8,
respectively.

Proof of Theorem 3.1. It is easy to see that Theorem 3.1 is equivalent to Theorem 3.9 for
the reversed dynamics, i.e. by replacing f with g = f ◦ T −1 ◦ ι = f ◦ ι ◦ T , and ν with
ι∗ν.

3.2. Properties of the harmonic function. The goal of this section is to give some
additional properties of the harmonic function V̌ g which will be necessary for the proof of
Theorem 1.3. We start with a continuity result on the cohomology class of the function g.

LEMMA 3.10. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Let α ∈ (0, 1)
and (hn)n�0 be a sequence of element of Bα that converges to 0 with respect to the Hölder
norm ‖ · ‖α . For n � 0, set gn = g + hn ◦ T − hn. Then, there exists a constant c > 0 such
that for any n � 0, z ∈ X+ and t ∈ R, one has

V̌ gn(z, t) � max{t , 0} + c. (3.18)

Moreover, for any continuous compactly supported function ϕ on R, we have, uniformly in
z ∈ X+,

lim
n→∞

∫
R

ϕ(t)V̌ gn(z, t) dt =
∫
R

ϕ(t)V̌ g(z, t) dt . (3.19)

Proof. The bound (3.18) follows from (3.11) and the relation gn = g + hn ◦ T − hn. The
construction of the function V̌ g in (3.19) can be performed in the same way as in Lemmas
3.6 and 3.8.

We can also describe how the function V̌ g behaves when the function g is shifted by the
dynamics.

LEMMA 3.11. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Then, for any
z ∈ X+ and t ∈ R, we have

V̌ g◦T −1
(z, t) = Lψ

(
V g(·, t)) (z).
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Proof. By Lemma 3.8, for any continuous compactly supported function ϕ on R, we have∫
R

ϕ(t)V̌ g◦T −1
(z, t) dt = lim

n→∞

∫
R

ϕ(t)

∫
X

−
z

Šng(T
−1(y · z))1{τ̌ g◦T−1

t (y·z)>n}ν
−
z (dy) dt .

By conditioning on the coordinate y−1, we get∫
X

−
z

Šng(T
−1(y · z))1{

τ̌
g◦T−1
t (y·z)>n

}ν−
z (dy)

=
∫
A1
z

∫
X

−
z

Šng(w · (y−1 · z))1{
τ̌
g
t (w·(y−1·z))>n

}ν−
z (dy)ν

1
z (dy−1).

Again by Lemma 3.8, we obtain

V̌ g◦T −1
(z, t) =

∫
A1
z

V̌ g(y−1 · z, t)ν1
z (dy−1) = Lψ

(
V g(·, t)) (z),

as desired.

3.3. The harmonic measure and the proof of Theorem 1.1. In the case when g depends
only on the future (g ∈ B+), the function V̌ g satisfies the harmonicity equation (3.4). In
general, when g depends also on the past, this property may not hold. It turns out that
equation (3.4) can be reinterpreted as a kind of invariance property of a certain Radon
measure, which we introduce at the end of this section. Indeed, we have:

LEMMA 3.12. Let g be in B+ and let V be a locally integrable non-negative function on
X+ × R. Then the following are equivalent.
(1) For ν+ ⊗ dt almost every (z, t) in X+ × R, we have

V (z, t) =
∑

z′∈X+:T (z′)=z
e−ψ(z′)1{t+g(z′)�0}V (z′, t + g(z′)).

(2) For any continuous compactly supported function ϕ on X+ × R, we have∫
X+×R

ϕ(z, t)V (z, t)ν+(dz) dt =
∫
X+

∫ ∞

0
ϕ(T z, t − g(z))V (z, t)ν+(dz) dt .

(3.20)

Proof. The proof is a direct computation. Indeed, for any continuous compactly supported
function ϕ on X+ × R, by a change of variable, the right-hand side of (3.20) can be
written as ∫

R

∫
X+
ϕ(T z, t)1{t+g(z)�0}V (z, t + g(z))ν+(dz) dt .

As ν+ is Lψ invariant, by using (2.5), we get for t ∈ R,∫
X+
ϕ(T z, t)1{t+g(z)�0}V (z, t + g(z))ν+(dz)

=
∫
X+
ϕ(z, t)

( ∑
T z′=z

e−ψ(z′)1{t+g(z′)�0}V (z′, t + g(z′))
)
ν+(dz).

This proves the lemma.
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We now show that the functions V̌ g and V g can be seen as the densities with respect to
the Lebesgue measure on R of the projections on R of certain natural Radon measures μ̌g

and μg on X × R, which satisfy an invariance property similar to (3.20). Those measures
will play a key role in the statement of the conditioned local limit theorem. The purpose
of this subsection is to build them. This construction will follow the same lines as that of
the harmonic functions. We first use Markov chain arguments to define these objects when
g ∈ B+ and then use approximation arguments to extend the definition to the general case.

We first assume that g is in B+. In that case, for (z, t) ∈ X+ × R with V̌ g(z, t) > 0,
let us introduce a Borel probability measure μ̌g,−

z,t on X−
z . To do this, for n � 1, let Anz be

as in the definition (2.7). For a ∈ Anz , let us write a · z for the element X+ whose n first
coordinates are a−n, . . . , a−1 and whose kth coordinate is zk−n for k � n.

LEMMA 3.13. Let g be in B+ such that ν+(g) = 0 and g is not cohomologous to 0.
Let (z, t) be in X+ × R with V̌ g(z, t) > 0. Then, there exists a unique Borel probability
measure μ̌g,−

z,t on X−
z such that for any n � 0 and any a ∈ Anz we have

μ̌
g,−
z,t ({y ∈ X−

z : y−n = a−n, . . . , y−1 = a−1})
= 1

V̌ g(z, t)
exp(−Snψ(a · z))V̌ g(a · z, t + Sng(a · z)), (3.21)

as soon as t + Skg(T
k(a · z)) � 0 for all 1 � k � n.

Proof. The proof is a translation of the general construction of the Markov measures on
the set of trajectories of a Markov chain.

Recall that, for a ∈ Anz , we denoted by Ca,z (see (2.6)) the associated cylinder of length
n in X−

z . For n � 0, define μ̌g,n
z,t as a function on cylinders of length n in X−

z by the formula

μ̌
g,n
z,t (Ca,z) = 1

V̌ g(z, t)
exp(−Snψ(a · z))V̌ g(a · z, t + Sng(a · z)),

if t + Skg(T
k(a · z)) � 0 for all 1 � k � n; if not, we set μ̌g,n

z,t (Ca,z) = 0, (compare with
(2.7)). We claim that for any a ∈ Anz , we have

μ̌
g,n
z,t (Ca,z) =

∑
b∈A

M(b,a−n)=1

μ̌
g,n+1
z,t (Cb·a,z), (3.22)

(compare with (2.8)). Indeed, this follows from the harmonicity property of the function
V̌ g established in Lemma 3.2. By Kolmogorov’s extension theorem, equation (3.22)
implies that there exists a unique Borel probability measure μ̌g,−

z,t on X−
z such that for

any n � 0, μ̌g,n
z,t is the restriction of μ̌g,−

z,t to cylinders of length n. The lemma follows.

In the same way as for the function V̌ g , we can give an alternative definition of the
measures μ̌g,−

z,t , which relies on a convergence property.
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LEMMA 3.14. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Let (z, t)
be in X+ × R and ϕ be a continuous function on X−

z . Then, we have

μ̌
g,−
z,t (ϕ)V̌

g(z, t) = lim
n→∞

∫
X

−
z

Šng(y · z)ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy). (3.23)

Proof. By Lemma 3.3, the limit in equation (3.23) is the same as the limit of∫
X

−
z

(t + Šng(y · z))ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy).

The latter quantity is non-negative whenever ϕ is non-negative. In addition, if ϕ = 1, the
convergence follows from Lemma 3.4. Therefore, it suffices to check the convergence when
ϕ is the indicator function of a cylinder set. Thus, let m � 0 be an integer. Pick a ∈ Amz
and let Ca,z be the associated cylinder in X−

z . If Skg(T k(a · z)) < 0 for some 1 � k � m,
we have for n � m,∫

X
−
z

(t + Šng(y · z))1Ca,z (y)1{τ̌ gt (y·z)>n}ν
−
z (dy) = 0.

If not, we have for n � m,∫
X

−
z

(t + Šng(y · z))1Ca,z (y)1{τ̌ gt (y·z)>n}ν
−
z (dy) = exp(−Smψ(a · z))

×
∫
X

−
a·z
(t + Šn−mg(y · a · z)+ Smg(a · z))1{τ̌ g

t+Smg(a·z)(y·a·z)>n−m}ν
−
a·z(dy).

By Lemma 3.4, as n → ∞, this converges to

exp(−Smψ(a · z))V̌ g(a · z, t + Smg(a · z)),
which, by the definition of μ̌g,−

z,t in Lemma 3.13, is equal to μ̌g,−
z,t (Ca,z)V̌

g(z, t).

Using Lemma 3.14, we can now give a definition of μ̌g,−
z,t for a function g only depending

on finitely many negative coordinates.

LEMMA 3.15. Let g ∈ B such that ν(g) = 0 and g is not a coboundary. Assume that g
only depends on m negative coordinates for some m � 0. In other words, the function
h = g ◦ T m ∈ B+. Let (z, t) be in X+ × R and ϕ be a continuous function on X−

z . For
a ∈ Amz , set ϕa to be the function y �→ ϕ(y · a) on X−

a·z. Then, we have

lim
n→∞

∫
X

−
z

Šng(y · z)ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy)

=
∑
a∈Amz

exp(−Smψ(a · z))V̌ h(a · z, t)μ̌h,−
a·z,t (ϕa).

Before proving this lemma, we recall some useful facts. Let g and h be as in Lemma 3.15.
For z ∈ X+ and t ∈ R,

V̌ g(z, t) = Lmψ(V̌ h(·, t))(z) =
∑
a∈Amz

exp(−Smψ(a · z))V̌ h(a · z, t).
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If V̌ g(z, t) > 0 and ϕ is a continuous function on X−
z , we set

μ̌
g,−
z,t (ϕ) = 1

V̌ g(z, t)

∑
a∈Amz

exp(−Smψ(a · z))V̌ h(a · z, t)μ̌h,−
a·z,t (ϕa). (3.24)

Lemma 3.15 implies that the notation (3.24) is coherent with that introduced in
Lemma 3.13.

Proof of Lemma 3.15. As in the proof of Lemma 3.5, by conditioning over the m first
coordinates of y, we get for n � 0,∫

X
−
z

Šng(y · z)ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šng((y · a) · z)ϕ(y · a)1{τ̌ gt ((y·a)·z)>n}ν

−
a·z(dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šnh(T

−m(y · a) · z)ϕa(y)1{τ̌ h◦T−m
t ((y·a)·z)>n}ν

−
a·z(dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Šnh(y · (a · z))ϕa(y)1{τ̌ ht (y·(a·z))>n}ν

−
a·z(dy),

where we have used the relations (y · a) · z = T m(y · (a · z)) and τ̌ h◦T −m
t = τ̌ ht ◦ T −m.

The conclusion now follows from Lemma 3.14.

Now we prove that the convergence in Lemma 3.15 holds in a weak sense for every
function g ∈ B.

LEMMA 3.16. Assume that g ∈ B is not a coboundary with respect to T and ν(g) = 0.
Then, for any z ∈ X+, for any continuous compactly supported function ϕ on X−

z × R, the
following limit exists and is finite:

lim
n→∞

∫
R

∫
X

−
z

Šng(y · z)ϕ(y, t)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt .

Proof. First let us assume that ϕ is of the form (y, t) �→ ϕ1(y)ϕ2(t), where ϕ1 and ϕ2 are
non-negative continuous functions on X−

z and R, and ϕ2 is compactly supported. In that
case, let (gm)m�0, c1 > 0 and α ∈ (0, 1) be as in Lemma 2.11. Set

Wn(z, t) =
∫
X

−
z

(t + Šng(y · z))ϕ1(y)1{τ̌ gt (y·z)>n}ν
−
z (dy)

and

Wn,m(z, t) =
∫
X

−
z

(t + Šngm(y · z))ϕ1(y)1{τ̌ gmt (y·z)>n}ν
−
z (dy).

By (2.18), we have the inclusions

{τ̌ gmt−2c1αm
> n} ⊆ {τ̌ gt > n} ⊆ {τ̌ gmt+2c1αm

> n},
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which imply that

Wn,m(z, t − 2c1α
m) � Wn(z, t) � Wn,m(z, t + 2c1α

m). (3.25)

By Lemma 3.15, for fixed m � 0, as n → ∞, the function Wn,m(z, t) converges to
μ̌
gm,−
z,t (ϕ1)V̌

gm(z, t). From (3.25) we get

μ̌
gm,−
z,t−2c1αm

(ϕ1)V̌
gm(z, t − 2c1α

m) � lim inf
n→∞ Wn(z, t) � lim sup

n→∞
Wn(z, t)

� μ̌
gm,−
z,t+2c1αm

(ϕ1)V̌
gm(z, t + 2c1α

m).

Now we have∫
R

ϕ2(t)[μ̌
gm,−
z,t+2c1αm

(ϕ1)V̌
gm(z, t + 2c1α

m)− μ̌
gm,−
z,t−2c1αm

(ϕ1)V̌
gm(z, t − 2c1α

m)] dt

=
∫
R

[ϕ2(t − 2c1α
m)− ϕ2(t + 2c1α

m)]μ̌gm,−
z,t (ϕ1)V̌

gm(z, t) dt . (3.26)

Using (3.9) and Lemma 3.5, we have that V̌ gm(z, t) � c2 + max{t , 0}. As ϕ2 is continuous
on R with compact support, by the Lebesgue-dominated convergence theorem, we
get that the left-hand side of (3.26) converges to 0 as m → ∞. This tells us that∫
R
ϕ2(t)Wn(z, t) dt has a limit as n → ∞. In other words, the lemma holds for the

function ϕ(y, t) = ϕ1(y)ϕ2(t). This is also true when ϕ1 and ϕ2 are not necessarily
non-negative.

The general case follows from a standard but tedious approximation argument. Indeed,
we can find a continuous compactly supported function θ on R with support K such
that for any ε > 0, there exist an integer p � 0 and continuous functions ϕi,1 on X−

z

and continuous compactly supported functions ϕi,2 on R with support included in K,
1 � i � p, with

sup
y∈X−

z

|ϕ(y, t)− ϕε(y, t)| � εθ(t), t ∈ R, (3.27)

where ϕε(y, t) = ∑p

i=1 ϕi,1(y)ϕi,2(t). We set t0 = supt∈K |t |. By Lemma 3.3, we need to
show that

Un =
∫
R

∫
X

−
z

(t0 + Šng(y · z))ϕ(y, t)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt

has a limit as n → ∞. By the first case, we know that

Un,ε =
∫
R

∫
X

−
z

(t0 + Šng(y · z))ϕε(y, t)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt

has a limit Uε as n → ∞. In addition, by Lemma 3.6, we get that∫
R

∫
X

−
z

(t0 + Šng(y · z))θ(t)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt

converges to
∫
R
V̌ g(z, t)θ(t) dt . By (3.27), we have

Uε − ε

∫
R

V̌ g(z, t)θ(t) dt � lim inf
n→∞ Un � lim sup

n→∞
Un � Uε + ε

∫
R

V̌ g(z, t)θ(t) dt ,
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which gives

lim sup
n→∞

Un − lim inf
n→∞ Un � 2ε

∫
R

V̌ g(z, t)θ(t) dt .

Hence, the proof of Lemma 3.16 is complete.

Now we use the previous lemma to build a Radon measure μ̌g,−
z on X−

z × R for any
g ∈ B.

LEMMA 3.17. Assume that g ∈ B is not a coboundary with respect to T and ν(g) = 0.
Then, for any z ∈ X+, there exists a unique Radon measure μ̌g,−

z on X−
z × R such that for

any continuous compactly supported function ϕ on X−
z × R,

lim
n→∞

∫
R

∫
X

−
z

ϕ(y, t)Šng(y · z)1{τ̌ gt (y·z)>n}ν
−
z (dy) dt =

∫
R

∫
X

−
z

ϕ(y, t)μ̌g,−
z (dy, dt).

(3.28)

In addition, the marginal measure of μ̌g,−
z on R under the natural projection map is the

absolutely continuous measure V̌ g(z, t) dt .

Proof. By Lemma 3.16, the limit on the left-hand side of (3.28) exists. By Lemma 3.3, the
limit is the same as that of

lim
n→∞

∫
R

∫
X

−
z

ϕ(y, t)(t0 + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt ,

where t0 > 0 is arbitrarily large. In particular, this limit is non-negative. By Riesz
representation theorem, it may be written as μ̌g,−

z (ϕ), where μ̌g,−
z is a Radon measure on

X−
z × R. By Lemma 3.8, the marginal measure of μ̌g,−

z on R under the natural projection
map is the absolutely continuous measure V̌ g(z, t) dt .

We define the Radon measure μ̌g on X × R by setting, for any continuous compactly
supported function ϕ on X × R,

μ̌g(ϕ) =
∫
X+

∫
R

∫
X

−
z

ϕ(y · z, t)μ̌g,−
z (dy, dt)ν+(dz).

The main result of this section is stated as follows.

THEOREM 3.18. Let g be a Hölder continuous function on X such that ν(g) = 0 and g is
not a coboundary. Then, for any continuous compactly supported function ϕ on X × R, we
have

lim
n→∞

∫
X

∫
R

ϕ(x, t)Šng(x)1{τ̌ gt (x)>n}ν(dx) dt =
∫
X×R

ϕ(x, t)μ̌g(dx, dt). (3.29)

Moreover, the following harmonicity property holds:∫
X×R

ϕ(x, t)μ̌g(dx, dt) =
∫
X

∫ ∞

0
ϕ(T x, t − g(x))μ̌g(dx, dt). (3.30)
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Proof. We can assume that ϕ is non-negative. By Lemma 3.17, for every z ∈ X+ and
t ∈ R, we have

lim
n→∞

∫
X

−
z

∫
R

ϕ(y · z, t)(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt

=
∫
X

−
z

∫
R

ϕ(y · z, t)μ̌g,−
z (dy, dt).

Thanks to the dominated convergence theorem, this will imply (3.29). Indeed, for t ∈ R,
set θ(t) = supx∈X ϕ(x, t), so that θ is a continuous compactly supported function on R.
Note that ∫

X
−
z

∫
R

ϕ(y · z, t)(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt

�
∫
X

−
z

∫
R

θ(t)(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt .

By Lemma 3.8, we have, uniformly in z ∈ X+,

lim
n→∞

∫
R

θ(t)(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt =

∫
R

θ(t)V̌ g(z, t) dt .

By the dominated convergence theorem, we get (3.29).
Now we prove (3.30). By (3.29),∫

X×R

ϕ(x, t)μ̌g(dx, dt) = lim
n→∞

∫
X

∫
R

ϕ(x, t)Šng(x)1{τ̌ gt (x)>n}ν(dx) dt .

As ν is T-invariant, we have∫
X

∫
R

ϕ(x, t)Šng(x)1{τ̌ gt (x)>n}ν(dx) dt

=
∫
X

∫
R

ϕ(T x, t)(Šn−1g(x)+ g(x))1{τ̌ g
t+g(x)(x)>n−1}1{t+g(x)�0}ν(dx) dt

=
∫
X

∫
R

ϕ(T x, t − g(x))(Šn−1g(x)+ g(x))1{τ̌ gt (x)>n−1}1{t�0}ν(dx) dt .

By Lemma 3.3, the latter has the same limit, as n → ∞, as∫
X

∫
R

ϕ(T x, t − g(x))Šn−1g(x)1{τ̌ gt (x)>n−1}1{t�0}ν(dx) dt .

We prove in the following that we can apply (3.29) to the function (x, t) �→ ϕ(T x,
t − g(x))1{t�0} to get

lim
n→∞

∫
X

∫
R

ϕ(T x, t − g(x))Šn−1g(x)1{τ̌ gt (x)>n−1}1{t�0}ν(dx) dt

=
∫
X

∫ ∞

0
ϕ(T x, t − g(x))μ̌g(dx, dt),

which proves (3.30).
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To finish the proof, we need to show that (3.29) implies that for any continuous compact
supported function ϕ on X × R, as n → ∞, the quantity

In =
∫
X

∫ ∞

0
ϕ(x, t)Šng(x)1{τ̌ gt (x)>n}ν(dx) dt

converges to ∫
X

∫ ∞

0
ϕ(x, t)μ̌g(dx, dt). (3.31)

This is a standard argument by an approximation. Indeed, for ε > 0 and t ∈ R, set
χ−
ε (t) = 0 if t < 0; χ−

ε (t) = t/ε if 0 � t � ε and χ−
ε (t) = 1 if t > ε. Define also

χ+
ε (t) = χ−

ε (t + ε). Then, for any n � 0, we have∫
X×R

χ−
ε (t)ϕ(x, t)(t + Šng(x))1{τ̌ gt (x)>n}ν(dx) dt

� In �
∫
X×R

χ+
ε (t)ϕ(x, t)(t + Šng(x))1{τ̌ gt (x)>n}ν(dx) dt .

By (3.30) and Lemma 3.3, we obtain∫
X×R

χ−
ε (t)ϕ(x, t)μ̌g(dx, dt)

� lim inf
n→∞ In � lim sup

n→∞
In �

∫
X×R

χ+
ε (t)ϕ(x, t)μ̌g(dx, dt).

We claim that the left- and right-hand sides of the latter inequality converge to the integral
in (3.31). Indeed, for (x, t) ∈ X × R, we have that |χ+

ε (t)ϕ(x, t)| and |χ−
ε (t)ϕ(x, t)| are

dominated by |ϕ(x, t)|. The conclusion now follows from the dominated convergence
theorem.

As for the function V̌ g , the measure μ̌g enjoys the following continuity property on
cohomology classes.

LEMMA 3.19. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Let α ∈ (0, 1)
and (hm)m�0 be a sequence of element of Bα that converges to 0 with respect to the Hölder
norm ‖ · ‖α . For m � 0, set gm = g + hm ◦ T − hm. Then, for any continuous compactly
supported function ϕ on X × R, we have

lim
m→∞

∫
X×R

ϕ(x, t)μ̌gm(dx, dt) =
∫
X×R

ϕ(x, t)μ̌g(dx, dt). (3.32)

Proof. We can assume that ϕ is non-negative. By Theorem 3.18, for m � 0, we have∫
X×R

ϕ(x, t)μgm(dx, dt) = lim
n→∞

∫
X×R

ϕ(x, t)(t + Šngm(x))1{τ̌ gmt (x)>n}ν(dx) dt .

For any n � 0, we have Sngm � Sng + 2‖hm‖∞. Hence, for t ∈ R, we have τ̌ gmt �
τ̌
g

t+2‖hm‖∞ . We obtain
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X×R

ϕ(x, t)(t + Šngm(x))1{τ̌ gmt (x)>n}ν(dx) dt

�
∫
X×R

ϕ(x, t)(t + Šngm(x))1{τ̌ g
t+2‖hm‖∞>n}ν(dx) dt .

Again by Theorem 3.18, as n → ∞, the latter quantity converges to∫
X×R

ϕ(x, t − 2‖hm‖∞)μ̌g(dx, dt).

Thus, we have∫
X×R

ϕ(x, t)μ̌gm(dx, dt) �
∫
X×R

ϕ(x, t − 2‖hm‖∞)μ̌g(dx, dt).

In the same way, one also has∫
X×R

ϕ(x, t)μ̌gm(dx, dt) �
∫
X×R

ϕ(x, t + 2‖hm‖∞)μ̌g(dx, dt).

As ϕ is continuous, the conclusion follows from the dominated convergence theorem.

Proof of Theorem 1.1. So far we have proved Theorem 3.18 which is an analogue
of Theorem 1.1 for the reversed dynamical system (X, T −1, ν). By Lemma 2.5, this
dynamical system is isomorphic to a subshift of finite type equipped with a Gibbs measure.
Therefore, Theorem 1.1 is actually equivalent to Theorem 3.18. Formally, the former can
be obtained from the latter by replacing f with g = f ◦ T −1 ◦ ι = f ◦ ι ◦ T , and ν with
ι∗ν.

The reader may note that (3.20) is a particular case of (1.3), which is the reason to call
the Radon measure μf harmonic.

4. Conditioned limit theorems
In this section we prove Theorems 1.3 and 1.5.

4.1. Proof of Theorem 1.3. As in the construction of the harmonic function V̌ g and the
harmonic measure μ̌g , we prove Theorem 1.3 in several steps. The first step is to deal with
the case of functions g depending only on the future. The following result follows from
the general result for Markov chains established in [15, Theorem 2.3]. The assumptions of
this statement can be checked to hold thanks to the spectral gap properties of the Ruelle
operator formulated in §5.1.

LEMMA 4.1. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Then,
uniformly in z ∈ X+ and t in compact subsets of R,

lim
n→∞ σg

√
2πn ν−

z

(
y ∈ X−

z : τ̌ gt (y · z) > n
) = 2V̌ g(z, t).

We have to strengthen Lemma 4.1 by proving the following integral form.

LEMMA 4.2. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Then, for
any continuous compactly supported function ϕ on X−

z , we have, uniformly in z ∈ X+ and
t in compact subsets of R,
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lim
n→∞ σg

√
2πn

∫
X

−
z

ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy) = 2V̌ g(z, t)

∫
X

−
z

ϕ(y)μ̌
g,−
z,t (dy).

Proof. It suffices to prove this result when ϕ is the indicator function of a cylinder set
in X−

z , because the general case follows by a standard approximation argument. Thus, let
m � 0 and a ∈ Amz and, as before, denote by Ca,z the associated cylinder in X−

z (see (2.6)).
If t + Skg(T

m−k(a · z)) � 0 for every 1 � k � m, we have

σg
√

2πn
∫
X

−
z

1Ca,z (y)1{τ̌ gt (y·z)>n}ν
−
z (dy)

= σg
√

2πn exp(−Smψ(a · z))
∫
X

−
a·z

1{τ̌ g
t+Smg(a·z)(y·(a·z))>n−m}ν

−
a·z(dy).

By Lemma 4.1, as n → ∞, the latter quantity converges, uniformly in z ∈ X+ and t in
compact subsets of R, to

2V̌ g(a · z, t + Smg(a · z)) exp(−Smψ(a · z)),
which, by definition, is equal to 2V̌ g(z, t)μ̌g,−

z,t (Ca,z).
If there exists 1 � k � m with t + Skg(T

m−k(a · z)) < 0, we have μ̌g,−
z,t (Ca,z) = 0 and∫

X
−
z

1Ca,z (y)1{τ̌ gt (y·z)>n}ν
−
z (dy) = 0,

for n > k. The conclusion follows.

From Lemmas 4.1 and 4.2, we deduce the analogous result for functions which depend
only on finitely many negative coordinates.

LEMMA 4.3. Let g ∈ B be such that ν(g) = 0 and there existsm � 0 with g ◦ T m ∈ B+.
Assume that g is not a coboundary. Then, uniformly in z ∈ X+ and t in compact subsets
of R,

lim
n→∞ σg

√
2πn ν−

z (y ∈ X−
z : τ̌ gt (y · z) > n) = 2V̌ g(z, t).

Moreover, for any continuous compactly supported function ϕ on X−
z , uniformly in z ∈ X+

and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy) = 2V̌ g(z, t)

∫
X

−
z

ϕ(y)μ̌
g,−
z,t (dy).

Proof. As in Lemma 3.15, for a ∈ Amz , let ϕa be the continuous function y �→ ϕ(a · y) on
X−
a·z. We have, by setting h = g ◦ T m,∫

X
−
z

ϕ(y)1{τ̌ gt (y·z)>n}ν
−
z (dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
ϕa(y)1{τ̌ ht (y·(a·z))>n}ν

−
a·z(dy).

The conclusion now follows from Lemmas 4.1 and 4.2 and (3.24).
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Now we use the same approximation argument as before to deduce from Lemma 4.3 a
slightly weaker statement that works for every function g in B. This is the main result of
this section.

THEOREM 4.4. Let g ∈ B be such that ν(g) = 0. Assume that g is not a coboundary.
Then, for any continuous compactly supported function ϕ on R, we have, uniformly in
z ∈ X+,

lim
n→∞ σg

√
2πn

∫
R

ϕ(t)ν−
z (y ∈ X−

z : τ̌ gt (y · z) > n) dt = 2
∫
R

ϕ(t)V̌ g(z, t) dt .

Moreover, for any continuous compactly supported function ϕ on X × R, we have

lim
n→∞ σg

√
2πn

∫
X×R

ϕ(x, t)1{τ̌ gt (x)>n}ν(dx) dt = 2
∫
X×R

ϕ(x, t)μ̌g(dx, dt).

Proof. For (z, t) ∈ X+ × R, denote

V̌
g
n (z, t) = 1

2σg
√

2πn ν−
z (y ∈ X−

z : τ̌ gt (y · z) > n).

Let (gm)m�0 be the sequence of Hölder continuous functions as in Lemma 2.11. For
z ∈ X+ and t ∈ R, we have

V̌
gm
n (z, t − 2c1α

m) � V̌
g
n (z, t) � V̌

gm
n (z, t + 2c1α

m).

By taking the limit as n → ∞, we get by Lemma 4.3,

V̌ gm(z, t − 2c1α
m) � lim inf

n→∞ V̌
g
n (z, t) � lim sup

n→∞
V̌
g
n (z, t) � V̌ gm(z, t + 2c1α

m).

The first part of the lemma now follows from Lemma 3.10.
Let now ϕ be a non-negative continuous compactly supported function on X × R. For

m, n � 0, we have∫
X×R

ϕ(x, t)1{τ̌ gm
t−2c1αm

(x)>n}ν(dx) dt �
∫
X×R

ϕ(x, t)1{τ̌ gt (x)>n}ν(dx) dt

�
∫
X×R

ϕ(x, t)1{τ̌ gm
t+2c1αm

(x)>n}ν(dx) dt .

The conclusion follows from Lemmas 3.19 and 4.3.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. The first assertion of Theorem 1.3 follows from the second assertion
of Theorem 4.4 by replacing f with g = f ◦ T −1 ◦ ι = f ◦ ι ◦ T , and ν with ι∗ν. The
second assertion is also obtained from Theorem 4.4 by using Lemma 2.12.

From Theorem 1.3, we get the following coarse domination which will be used in the
proof of the conditioned local limit theorem (Theorem 1.7).

COROLLARY 4.5. Let g be in B+ with ν(g) = 0. Assume that g is not cohomologous
to 0. Let G be a continuous compactly supported function on X+ × R. Then there exists a
constant c > 0 such that for any n � 1,
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R

sup
z∈X+

∫
X

−
z

G(T −n(y · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) dt �

c√
n

.

Proof. By replacing G with the function supz∈X+ |G(z, t)|, we can assume that G does
not depend on the first coordinate. Let c0 be as in Lemma 2.9. For t ∈ R, set G1(t) =
sup|t ′−t |�c0

|G(t ′)|. Then for any t ∈ R and z, z′ ∈ X+ with z0 = z′0, we have∫
X

−
z

G(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

�
∫
X

−
z

G1(t + Šng(y · z′))1{τ̌ gt+c0 (y·z′)>n}ν
−
z (dy)

� c

∫
X

−
z′
G1(t + Šng(y · z′))1{τ̌ gt+c0 (y·z′)>n}ν

−
z′ (dy),

for some constant c > 0 coming from Lemma 2.3. By integrating over z′ ∈ X+, we get

sup
z∈X+

∫
X

−
z

G(t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

� c

c1

∫
X

G1(t − c0 + Šng(x))1{τ̌ gt (x)>n}ν(dx),

where c1 = infa∈A ν+{z′ ∈ X+ : z′0 = a}. Integrating over t ∈ R, we get the result by
Theorem 1.3.

4.2. Proof of Theorem 1.5. Again we start with the case of Markov chains. As in the
previous section, using the argument of [15, Theorem 2.5], we get the following result.

LEMMA 4.6. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Then, for
any continuous compactly supported function F on X+ × R, we have, uniformly in z ∈ X+
and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F

(
(T −n(y · z))+,

Šng(y · z)
σg

√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X+×R

F(z′, u)φ+(u) duν+(dz′).

We extend the previous lemma to allow functions F depending on the past coordinates
in X.

LEMMA 4.7. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Then, for
any continuous compactly supported function F on X × R, we have, uniformly in z ∈ X+
and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F

(
T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X×R

F(x, u)φ+(u) duν(dx).
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Proof. For a ∈ A{−m,...,−1}, set Ca = {x ∈ X : x−m = a−m, . . . , x−1 = a−1}. By a stan-
dard approximation argument, it suffices to prove the result for the set of functions F of the
form (x, t) �→ 1Ca (x)F1(x+, t), where F1 is a continuous compactly supported function
on X+ × R, and a ∈ A{−m,...,−1} with M(ai−1, ai) = 1 for −m+ 1 � i � −1. We want
to determine the limit as n → ∞,

In :=
∫
X

−
z

F

(
T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy).

Note that in this integral, all the terms only depend on the coordinates y−n, y−n+1, . . . , y−1

except T −n(y · z). By integrating first over the deep past coordinates . . . , y−n−2, y−n−1,
we get by using Lemma 2.2,

In =
∫
X

−
z

F2

(
(T −n(y · z))+,

Šng(y · z)
σg

√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy),

where, for (z′, t) ∈ X+ × R,

F2(z
′, t) = exp(−Smψ(a−m . . . a−1 · z′))F1(z

′, t).

Lemma 4.6 gives uniformly in z ∈ X+ and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F2

(
(T −n(y · z))+,

Šng(y · z)
σg

√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X+×R

F2(z
′, u)φ+(u) duν+(dz′).

By construction of the measure ν in Lemma 2.2, we have∫
X+×R

F2(z
′, u)φ+(u) duν+(dz′) =

∫
X×R

F(x, u)φ+(u) duν(dx),

which ends the proof of the lemma.

As for Theorem 1.3, we get the following version of Lemma 4.7, where we add a source
target function.

LEMMA 4.8. Let g ∈ B+ with ν(g) = 0 and assume that g is not a coboundary. Then,
for any continuous compactly supported function F on X−

z × X × R, we have, uniformly
in z ∈ X+ and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F

(
y, T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X

−
z ×X×R

F(y′, x, u)φ+(u)μ̌g,−
z,t (dy

′)ν(dx) du.

The proof of Lemma 4.8 can be carried out in the same way as that of Lemma 4.2 and
therefore is left to the reader. By using again conditioning and Lemma 3.15, we extend the
previous lemma to functions g depending on finitely many coordinates of the past.
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LEMMA 4.9. Let g ∈ B be such that ν(g) = 0 and there existsm � 0 with g ◦ T m ∈ B+.
Assume that g is not a coboundary. Then, for any continuous compactly supported function
F on X × R, we have, uniformly in z ∈ X+ and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F

(
T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X×R

F(x, u)φ+(u)ν(dx) du.

Moreover, for any continuous compactly supported function F on X−
z × X × R, we have,

uniformly in z ∈ X+ and t in compact subsets of R,

lim
n→∞ σg

√
2πn

∫
X

−
z

F

(
y, T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

= 2V̌ g(z, t)
∫
X

−
z ×X×R

F(y′, x, u)φ+(u)μ̌g,−
z,t (dy

′)ν(dx) du.

Proof. We prove only the second assertion, because the first is a particular case of the
second. As in Lemma 3.15, for a ∈ Amz , set Fa to be the function on X−

a·z × X × R defined
by Fa(y, x, t) = F(y · a, T mx, t). We have, by setting h = g ◦ T m,∫

X
−
z

F

(
y, T −n(y · z), Šng(y · z)

σg
√
n

)
1{τ̌ gt (y·z)>n}ν

−
z (dy)

=
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Fa

(
y, T −n(y · (a · z)), Šnh(y · (a · z))

σg
√
n

)
× 1{τ̌ ht (y·(a·z))>n}ν

−
a·z(dy).

The conclusion now follows from Lemma 4.8 and (3.24).

The same technique as in Lemma 4.4 gives the following result.

LEMMA 4.10. Let g ∈ B with ν(g) = 0 and assume that g is not a coboundary. Then, for
any continuous compactly supported function F on X × X × R × R, we have

lim
n→∞ σg

√
2πn

∫
X×R

F

(
x, T −nx, t ,

Šng(y · z)
σg

√
n

)
1{τ̌ gt (x)>n}ν(dx) dt

= 2
∫
X×R×X×R

F(x, x′, t , t ′)φ+(t ′)ν(dx′) dt ′μ̌g(dx, dt).

Theorem 1.5 easily follows from Lemma 4.10.

5. Effective local limit theorems
So far we have adapted some results from the theory of Markov chains to the case of
hyperbolic dynamical systems by constructing the analogues of the harmonic functions
V g and V̌ g and building the harmonic measures μg and μ̌g . In the remaining part of the
paper, we use these objects to establish conditioned limit theorems, by adapting the strategy
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from the case of sums of independent random variables [18]. We start with formulating an
effective version of the ordinary local limit theorem which is adapted to our needs.

5.1. Spectral gap theory. Fix α ∈ (0, 1) such that ψ ∈ B+
α , where ψ is the potential

function used for the construction of the Gibbs measure ν (see §2.1). Denote by
L(B+

α , B+
α ) the set of all bounded linear operators from B+

α to B+
α equipped with the

standard operator norm ‖ · ‖B+
α →B+

α
. From the general construction of the Ruelle operator,

every f ∈ B+
α gives rise to a family of perturbed operators (Lψ+itf ) defined as follows:

for any ϕ ∈ B+
α ,

Lψ+itf ϕ(z) =
∑

z′: T z′=z
e−ψ(z′)−itf (z′)ϕ(z′), z ∈ X+, t ∈ R. (5.1)

By iteration, it follows that for any ψ , f ∈ Bα and t ∈ R,

Lnψ+itf ϕ(z) =
∑

z′: T nz′=z
e−Sn(ψ+itf )(z′)ϕ(z′), z ∈ X+.

The following result (see [24]) provides the spectral gap properties for the perturbed
operator Lψ+itf . For similar statements in the case of Markov chains we refer to [21].

LEMMA 5.1. Assume that f ∈ B+
α is not a coboundary and that ν(f ) = 0. Then, there

exists a constant δ > 0 such that for any t ∈ (−δ, δ),
Lnψ+itf = λnt �t +Nn

t , n � 1, (5.2)

where the mappings t �→ �t : (−δ, δ) → L(B+
α , B+

α ) and z �→ Nt : (−δ, δ) →
L(B+

α , B+
α ) are analytic in the operator norm topology, �t is a rank-one projection

with �0(ϕ)(z) = ν+(ϕ) for any ϕ ∈ B+
α and z ∈ X+, �tNt = Nt�t = 0. Moreover,

there exist n0 � 1 and q ∈ (0, 1) such that for any t ∈ (−δ, δ) the ‖Nn0
t ‖B+

α →B+
α
� q.

The eigenvalue λt has the asymptotic expansion: as t → 0,

λt = 1 − σ 2
f

2
t2 +O(|t |3). (5.3)

Note that because f is not a coboundary with respect to T, the asymptotic variance σ 2
f

appearing in (5.3) is strictly positive.

LEMMA 5.2. Let f ∈ B+
α and t 	= 0. Assume that for any p 	= 0 and q ∈ R, the function

pf + q is not cohomologous to a function with values in Z. Then, for any t 	= 0, the
operator Lψ+itf has spectral radius strictly less than 1 in B+

α . More precisely, for any
compact set K ⊂ R \ {0}, there exist constants cK , c′K > 0 such that for any ϕ ∈ B+

α and
n � 1,

sup
t∈K

‖Lnψ+itf ϕ‖B+
α
� c′Ke−cKn‖ϕ‖B+

α
. (5.4)

Proof. The proof of the first assertion can be found in [24, Theorem 4.5]. Now
we prove (5.4). For every t ∈ K , there exist n0(t) � 1 and α(t) ∈ (0, 1) such that
‖Ln0(t)

ψ+itf ‖B+
α →B+

α
< α(t). As the operator Lψ+itf depends continuously on t for the
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operator norm topology, there exists δ = δ(t) such that for any s ∈ (t − δ(t), t +
δ(t)), we still have ‖Ln0(t)

ψ+isf ‖B+
α →B+

α
< 1. In particular, for every n � 0 we have

‖Lnψ+isf ‖B+
α →B+

α
� c(t)α(t)n/n0(t), for some c(t) > 0. By compactness, we can find

t1, . . . , tr ∈ K such that K ⊂ ⋃r
i=1(ti − δ(ti), ti + δ(ti)). In particular, by setting

c = max1�i�r c(ti), α = max1�i�r α(ti) and n0 = max1�i�r n0(ti), we get for any
s ∈ K and n � 0, ‖Ln

ψ+isf ‖B+
α →B+

α
� cαn/n0 .

5.2. Local limit theorem for smooth target functions. In the following we establish a
local limit theorem for Markov chains with a precise estimation of the remainder term. Let
F be a measurable non-negative bounded target function on X × R. The probability we are
interested in can be written as follows: for any z ∈ X+,∫

X
−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy).

The main difficulty is to give a local limit theorem with the explicit dependence of the
remainder terms on F.

We first describe the kind of target functions that we will use.

LEMMA 5.3. Let X be a compact metric space and α > 0. Let F be a real-valued function
on X × R such that:
(1) for any t ∈ R, the function z �→ F(z, t) is α-Hölder continuous on X;
(2) for any z ∈ X, the function t �→ F(z, t) is measurable on R.
Then, the function (z, t) �→ F(z, t) is measurable on X × R and the function
t �→ ‖F(·, t)‖α is measurable on R, where the norm ‖ · ‖α is the usual norm on the
space of α-Hölder continuous functions on X. Moreover, if the integral

∫
R

‖F(·, t)‖α dt is
finite, we define the partial Fourier transform F̂ of F by setting for any z ∈ X and u ∈ R,

F̂ (z, u) =
∫
R

eituF (z, t) dt .

This is a continuous function on X × R. In addition, for every u ∈ R, the function
z �→ F̂ (z, u) is α-Hölder continuous and ‖F̂ (·, u)‖α �

∫
R

‖F(·, t)‖α dt .

Proof. As the space X is separable and the function z �→ F(z, t) is continuous on X
for any t ∈ R, the supremum supz∈X |F(z, t)| can be taken over a countable dense
subset, so that t �→ supz∈X |F(z, t)| is measurable. In the same way, because the function
z �→ F(z, t) is α-Hölder continuous on X for any t ∈ R, one can also verify that
supz,z′∈X(|F(z, t)− F(z′, t)|/αω(z,z′)) is a measurable function in t.

In case the integral
∫
R

‖F(·, t)‖α dt is finite, the partial Fourier transform F̂ is well
defined and continuous by the dominated convergence theorem. The norm domination is
obvious.

We denote by H +
α the set of real-valued functions on X+ × R such that conditions (1)

and (2) of Lemma 5.3 hold and the integral
∫
R

‖F(·, t)‖B+
α
dt is finite. For any compact
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set K ⊂ R, denote by H +
α,K the set of functions F ∈ H +

α such that the Fourier transform
F̂ (z, ·) has a support contained in K for any z ∈ X+. Let φ be the standard normal density:

φ(u) = 1√
2π
e−u2/2, u ∈ R.

THEOREM 5.4. Let α ∈ (0, 1). Assume that g ∈ B+
α such that ν+(g) = 0 and for any

p 	= 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in
Z. Let K ⊂ R be a compact set. Then there exists a constant cK > 0 such that for any
F ∈ H +

α,K , n � 1 and z ∈ X+,∣∣∣∣√n ∫
X

−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

−
∫
X+×R

1
σg
φ

(
u

σg
√
n

)
F(z′, u) duν+(dz′)

∣∣∣∣ � cK√
n

∫
R

‖F(·, t)‖B+
α
dt . (5.5)

Proof. Without loss of generality, we assume that σg = 1. By the Fourier inversion
formula, the Fubini theorem and a change of variable t to (t/

√
n), we get

√
n

∫
X

−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

=
√
n

2π

∫
X

−
z ×R

e−it Šng(y·z)F̂ ((T −ny · z)+, t)ν−
z (dy) dt

= 1
2π

∫
X

−
z ×R

e−(it/
√
n)Šng(y·z)F̂

(
(T −ny · z)+,

t√
n

)
ν−
z (dy) dt =: I .

Note that the Fubini theorem can be applied because the integral on X−
z is, in fact, a finite

sum. Denote

J (t) =
∫
X

−
z

e−(it/
√
n)Šng(y·z)F̂

(
(T −ny · z)+,

t√
n

)
ν−
z (dy)

− e−t2/2
∫
X+
F̂

(
z′, t√

n

)
ν+(dz′).

We decompose the integral I into three parts: I = I1 + I2 + I3, where

I1 = 1
2π

∫
|t |�δ√n

J (t) dt ,

I2 = 1
2π

∫
δ
√
n<|t |

[ ∫
X

−
z

e−(it/
√
n)Šng(y·z)F̂

(
(T −ny · z)+,

t√
n

)
ν−
z (dy)

]
dt ,

I3 = 1
2π

∫
|t |�δ√n

[
e−t2/2

∫
X+
F̂

(
z′, t√

n

)
ν+(dz′)

]
dt .

Estimate of I1. As
∫
R

‖F(·, u)‖B+
α
du < ∞, the function z �→ F̂ (z, t) is Hölder

continuous on X+ with Hölder norm at most
∫
R

‖F(·, u)‖B+
α
du, for any fixed t ∈ R.

Applying (5.2), we get
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J (t) = Ln
ψ+(it/√n)gF̂

(
·, t√

n

)
(z)− e−t2/2

∫
X+
F̂

(
z′, t√

n

)
ν+(dz′)

=
(
λn
t/

√
n

− e−t2/2
)
�t/

√
nF̂

(
·, t√

n

)
(z)

+ e−t2/2
(
�t/

√
n −�0

)
F̂

(
·, t√

n

)
(z)+Nn

t/
√
n
F̂

(
·, t√

n

)
(z)

=: J1(t)+ J2(t)+ J3(t).

For the first term, by (5.3) and simple calculations, we get

|J1(t)| � c|λn
t/

√
n

− e−t2/2| sup
|t ′|�δ

‖F̂ (·, t ′)‖B+
α
� C√

n
e−t2/4

∫
R

‖F(·, u)‖B+
α
du.

For the second and third terms, using again Lemma 5.1, we obtain

|J2(t)| + |J3(t)| � C

( |t |√
n
e−t2/2 + e−cn

) ∫
R

‖F(·, u)‖B+
α
du.

Therefore, we obtain the following upper bound for I1:

|I1| �
(
C√
n

+ Ce−cn
) ∫

R

‖F(·, u)‖B+
α
du � C√

n

∫
R

‖F(·, u)‖B+
α
du. (5.6)

Estimate of I2. As the function F̂ (z, ·) is compactly supported on K ⊂ [−C1, C1],
where C1 > 0 is a constant not depending on z ∈ X+, we have

I2 = 1
2π

∫
X

−
z

[ ∫
δ
√
n<|t |�C1

√
n

e−(it/
√
n)Šng(y·z)F̂

(
(T −ny · z)+,

t√
n

)
dt

]
ν−
z (dy)

=
√
n

2π

∫
δ<|t |�C1

[Lnψ+itf F̂ (·, t)(z)] dt .

Note that, for any t satisfying δ < |t | � C1,

sup
z∈X+

|Lnψ+itf F̂ (·, t)(z)| � ‖Lnψ+itf F̂ (·, t)‖B+
α
� ‖Lnψ+itf ‖L(B+

α ,B+
α )

‖F̂ (·, t)‖B+
α

.

Then, by Lemma 5.2, it follows that

|I2| = 1
2π

∫
δ<|t |�C1

√
n‖Lnψ+itf ‖L(B+

α ,B+
α )
dt sup

|t ′|∈[δ,C1]
‖F̂ (·, t ′)‖B+

α

� c′K
√
ne−cKn sup

|t ′|∈[δ,C1]
‖F̂ (·, t ′)‖B+

α
� c′Ke−cKn

∫
R

‖F(·, t)‖B+
α
dt . (5.7)

Estimate of I3. Note that

I3 = 1
2π

∫
R

[
e−t2/2

∫
X+
F̂

(
z,

t√
n

)
ν+(dz)

]
dt

− 1
2π

∫
|t |>δ√n

[
e−t2/2

∫
X+
F̂

(
z,

t√
n

)
ν+(dz)

]
dt .
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For the first term, by the Fourier inversion formula,

1
2π

∫
R

e−t2/2
∫
X+
F̂

(
z,

t√
n

)
ν+(dz) dt = 1√

2πn

∫
X+

∫
R

e−t2/2nF (z, t) dtν+(dz).

(5.8)

For the second term, using the fact that F̂ (z, t/
√
n) �

∫
R

|F(z, u)| du, we have

1
2π

∫
|t |>δ√n

[
e−t2/2

∫
X+
F̂

(
z,

t√
n

)
ν+(dz)

]
dt

� 1
2π

∫
|t |>δ√n

e−t2/2 dt
∫
X+×R

|F(z, u)| duν+(dz) � ce−δ2/4n
∫
R

‖F(·, u)‖B+
α
du.

(5.9)

Combining (5.6), (5.7), (5.8) and (5.9), and taking into account that δ is a fixed constant,
we conclude the proof of (5.5).

5.3. Local limit theorem for ε-dominated target functions. Let ε > 0. Let f , g be
functions on R. We say that the function g ε-dominates the function f (or f ε-minorates
g) if for any t ∈ R, it holds that

f (t) � g(t + v) for all |v| � ε.

In this case, we write f �ε g or g �ε f . For any functions F and G on X+ × R, we say
that F �ε G if F(z, ·) �ε G(z, ·) for any z ∈ X+.

In the proofs we make use of the following assertion. Denote by ρ the non-negative
density function on R, which is the Fourier transform of the function (1 − |t |)1|t |�1 for
t ∈ R. Set ρε(u) = (1/ε)ρ(u/ε) for u ∈ R and ε > 0.

LEMMA 5.5. Let ε ∈ (0, 1/4). Let f : R → R+ and g : R → R+ be integrable functions
satisfying f �ε g. Then, for any u ∈ R,

f (u) � 1
1 − 2ε

g ∗ ρε2(u), g(u) � f ∗ ρε2(u)−
∫

|v|>ε
f (u− v)ρε2(v) dv.

Remark 5.6. The domination property �ε implies, in particular, that if f �ε g and the
function g is integrable, then f is bounded and limu→∞ f (u) = 0, limu→−∞ f (u) = 0.
Indeed, because f �ε g and g is an integrable function, by Lemma 5.5 we have f �
(1/(1 − 2ε))g ∗ ρε2 . As the Fourier transform of g ∗ ρε2 is compactly supported on
[−1/ε2, 1/ε2], by the Fourier inversion formula,

|g ∗ ρε2(x)| =
∣∣∣∣ 1
2π

∫
R

e−itx ĝ(t)ρ̂ε2(t) dt

∣∣∣∣ � c.

Therefore, g ∗ ρε2 is bounded on R, so that f is bounded on R.

In the following, for any function F ∈ H +
α , we use the notation

F ∗ ρε2(z, t) =
∫
R

F(z, t − v)ρε2(v) dv, z ∈ X+, t ∈ R,
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and

‖F‖H +
α

=
∫
R

‖F(·, u)‖B+
α
du, ‖F‖ν+⊗Leb =

∫
R

∫
X+

|F(z, u)|ν+(dz) du.

The following properties are useful in the proofs.

LEMMA 5.7. Let F ∈ H +
α and ρ ∈ L1(R). Then F ∗ ρ ∈ H +

α and ‖F ∗ ρ‖H +
α

�
‖F‖H +

α
‖ρ‖L1(R).

THEOREM 5.8. Let α ∈ (0, 1) and g ∈ B+
α be such that ν+(g) = 0. Assume that for any

p 	= 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z.
There exists c > 0 with the following property: for any ε ∈ (0, 1

8 ), there exists a constant
cε > 0 such that for any non-negative function F and any function G ∈ H +

α satisfying
F �ε G, n � 1 and z ∈ X+,∫

X
−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

� 1√
n

∫
X+

∫
R

1
σg
φ

(
u

σg
√
n

)
G(z′, u) duν+(dz′)

+ cε√
n
‖G‖ν+⊗Leb + cε

n
‖G‖H +

α
, (5.10)

and for any non-negative function F and non-negative functions G, H ∈ H +
α satisfying

H �ε F �ε G, n � 1 and z ∈ X+,∫
X

−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

� 1√
n

∫
X+

∫
R

1
σg
φ

(
u

σg
√
n

)
H(z′, u) duν+(dz′)

− cε√
n
‖G‖ν+⊗Leb − cε

n
(‖G‖H +

α
+ ‖H‖H +

α
). (5.11)

Proof. Without loss of generality, we assume that σg = 1. We first prove the upper bound
(5.10). By Lemma 5.5, we have F � (1 + 4ε)G ∗ ρε2 and, hence,∫

X
−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

� (1 + 4ε)
∫
X

−
z

G ∗ ρε2((T
−ny · z)+, Šng(y · z))ν−

z (dy). (5.12)

By Lemma 5.7, Ĝ ∗ ρε2 ∈ H +
α , and the support of the function Ĝ ∗ ρε2(z, ·) =

Ĝ(z, ·)ρ̂ε2(·). is included in [−1/ε2, 1/ε2], for all z ∈ X+. Using Theorem 5.4, for any
ε ∈ (0, 1

4 ), there exists cε > 0 such that for all n � 1 and z ∈ X+,∫
X

−
z

G ∗ ρε2((T
−ny · z)+, Šng(y · z))ν−

z (dy)

� 1√
n

∫
X+

∫
R

φ

(
u√
n

)
G ∗ ρε2(z, u) duν+(dz)+ cε

n
‖G‖H +

α
. (5.13)

https://doi.org/10.1017/etds.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.15


Conditioned limit theorems 93

By a change of variable and Fubini’s theorem, we have for any z ∈ X+,∫
R

φ

(
u√
n

)
G ∗ ρε2(z, u) du = √

n

∫
R

φ√
n ∗ ρε2(t)G(z, t) dt , (5.14)

where φ√
n(t)= (1/

√
2πn)e−t2/2n, t ∈ R. For brevity, denoteψ(t)= sup|v|�ε φ√

n(t + v),
t ∈ R. Using the second inequality in Lemma 5.5, we have∫

R

φ√
n ∗ ρε2(t)G(z, t) dt

�
∫
R

ψ(t)G(z, t) dt +
∫
R

∫
|v|�ε

φ√
n(t − v)ρε2(v) dvG(z, t) dt =: J1 + J2.

For J1, by Taylor’s expansion and the fact that the function φ′ is bounded on R, we derive
that

J1 = 1√
n

[ ∫ −ε

−∞
φ

(
t + ε√
n

)
G(z, t) dt +

∫ ε

−ε
1√
2π
G(z, t) dt +

∫ ∞

ε

φ

(
t − ε√
n

)
G(z, t) dt

]
� 1√

n

∫
R

φ

(
t√
n

)
G(z, t) dt + cε√

n

∫
R

G(z, t) dt . (5.15)

For J2, because φ√
n � 1/

√
n and

∫
|v|�ε ρε2(v) dv � 2ε, we get

J2 � 1√
n

∫
R

( ∫
|v|�ε

ρε2(v) dv

)
G(z, t) dt � 2ε√

n

∫
R

G(z, t) dt . (5.16)

From (5.15) and (5.16), together with (5.12) and (5.13), we get (5.10).
Now we prove the lower bound (5.11). As F �ε H , using the second inequality in

Lemma 5.5, we get∫
X

−
z

F ((T −ny · z)+, Šng(y · z))ν−
z (dy)

�
∫
X

−
z

H ∗ ρε2((T
−ny · z)+, Šng(y · z))ν−

z (dy)

−
∫
X

−
z

∫
|v|�ε

H((T −ny · z)+, Šng(y · z)− v)ρε2(v) dvν
−
z (dy). (5.17)

For the first term, by Theorem 5.4, for any ε > 0, there exists c > 0 such that for all n � 1
and z ∈ X+,∫

X
−
z

H ∗ ρε2((T
−ny · z)+, Šng(y · z))ν−

z (dy)

� 1√
n

∫
X+

∫
R

φ

(
u√
n

)
H ∗ ρε2(z, u) duν+(dz)− cε

n

∫
R

‖H(·, u)‖B+
α
du. (5.18)

In the same way as in (5.14), we have∫
R

φ

(
u√
n

)
H ∗ ρε2(z, u) du = √

n

∫
R

φ√
n ∗ ρε2(t)H(z, t) dt . (5.19)

Using the first inequality in Lemma 5.5, we have φ√
n ∗ ρε2(t) � (1 − 2ε)ψ(t), for t ∈ R,

where ψ(t) = inf|v|�ε φ√
n(t + v). Proceeding in the same way as in (5.15) and (5.16), we

obtain that
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∫
X+

∫
R

φ

(
u√
n

)
H ∗ ρε2(z, u) duν+(dz)

�
∫
X+

∫
R

φ

(
u√
n

)
H(z, u) duν+(dz)− cε

∫
X+

∫
R

H(z, u) duν+(dz). (5.20)

For the second term on the right-hand side of (5.17), using (5.10) and the fact thatH �2ε G

and φ � 1, we get that there exist constants c, cε > 0 such that for any v ∈ R and n � 1,∫
X

−
z

H((T −ny · z)+, Šng(y · z)− v)ν−
z (dy)

� c√
n

∫
X+

∫
R

G(z, u) duν+(dz)+ c2ε

n

∫
R

‖G(·, u)‖B+
α
du.

This, together with the fact that
∫
|v|�ε ρε2(v)dv � 2ε, implies∫

X
−
z

∫
|v|�ε

H((T −ny · z)+, Šng(y · z)− v)ρε2(v)dvν
−
z (dy)

� 2cε√
n

∫
X+

∫
R

G(z, u) duν+(dz)+ c2ε

n

∫
R

‖G(·, u)‖B+
α
du. (5.21)

From (5.17), (5.18), (5.20) and (5.21), we obtain the lower bound (5.11).

6. Effective conditioned local limit theorems
6.1. Formulation of the result. We prove the following conditioned local limit theorem
for Markov chains which provides a rate of order n−1. This result will serve as an
intermediate step between the conditioned central limit Theorem 1.5 and the conditioned
local limit Theorem 1.7. The interest of this result lies in the fact that it is uniform in the
function F. In particular, the theorem is effective when the support of the function F moves
to infinity with the rate

√
n. This strategy is inspired by [7] for random walks in cones of

Rd , see also [16] for finite Markov chains and [18] for random walks on R. For a different
approach based on the Wiener–Hopf factorisation we refer to [6, 10, 32].

THEOREM 6.1. Let α ∈ (0, 1) and g ∈ B+
α be such that ν+(g) = 0. Assume that for any

p 	= 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z.
Let t0 ∈ R+. Then, there exist a constant c > 0 and a sequence (rn) of positive numbers
satisfying limn→∞ rn = 0 with the following properties.
(1) For any ε ∈ (0, 1

8 ), there exists a constant cε > 0 such that for any n � 1, z ∈ X+,
t � t0, any functions F , G : X+ × R → R+ satisfying F �ε G, G ∈ H +

α ,

n

∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

� 2V̌ g(z, t)

σ 2
g

√
2π

∫
X+

∫
R

G(z′, u′)φ+
(

u′

σg
√
n

)
du′ν+(dz′)

+ c

(
ε1/4 + rn

ε1/4

)
‖G‖ν+⊗Leb + cε√

n
‖G‖H +

α
. (6.1)
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(2) For any ε ∈ (0, 1
8 ), there exists a constant cε > 0 such that for any n � 1, z ∈

X+, t � t0, any functions F , G, H : X+ × R → R+ satisfying H �ε F �ε G,
G, H ∈ H +

α ,

n

∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy)

� 2V̌ g(z, t)

σ 2
g

√
2π

∫
X+

∫
R

H(z′, u′)φ+
(

u′

σg
√
n

)
du′ν+(dz′)

− c

(
ε1/12 + rn

ε1/4

)
‖G‖ν+⊗Leb − cε√

n
(‖G‖H +

α
+ ‖H‖H +

α
). (6.2)

6.2. Preparatory statements. The normal density of variance v > 0 is denoted by

φv(x) = 1√
2πv

e−x2/2v , x ∈ R,

and the Rayleigh density with scale parameter
√
v is denoted by

φ+
v (x) = x

v
e−x2/2v1R+(x), x ∈ R.

The standard normal density is denoted by φ(x) = φ1(x), x ∈ R. The following lemma
from [18] shows that when v is small the convolution φv ∗ φ+

1−v behaves like the Rayleigh
density.

LEMMA 6.2. For any v ∈ (0, 1/2] and x ∈ R, it holds

−|x|e−x2/21{x<0} � φv ∗ φ+
1−v(x)− √

1 − vφ+(x) �
√
ve−x2/2v + |x|e−x2/21{x<0}.

We need the following inequality of Haeusler [19, Lemma 1], which is a generalisation
of Fuk’s inequality for martingales.

LEMMA 6.3. Let ξ1, . . . , ξn be a martingale difference sequence with respect to the
non-decreasing σ -fields F0, F1, . . . , Fn. Then, for all u, v, w > 0,

P

(
max

1�k�n

∣∣∣∣ k∑
i=1

ξi

∣∣∣∣ � u

)
� 2 exp

{
u

v

(
1 − log

uv

w

)}

+
n∑
i=1

P(|ξi | > v)+ 2P
( n∑
i=1

E(ξ2
i |Fi−1) > w

)
. (6.3)

Using this lemma we establish the following Fuk-type inequality involving a target
function on the Markov chain ((T −ny · z)+)n�0.

LEMMA 6.4. Let α ∈ (0, 1), g ∈ B+
α such that ν+(g) = 0 and ϕ ∈ B+

α be non-negative.
There exist constants c, c′, c0 > 0 such that for any M > c0 and n � 1,

I :=
∫
X

−
z

[
ϕ((T −ny · z)+)1{max1�j�n |Šj g(y·z)|�M√

n}

]
ν−
z (dy)

� 2ν+(ϕ) exp(−cM)+ c′e−cn1/3‖ϕ‖B+
α

.
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Proof. By Propositions 2.6 and 2.7 and Lemma 2.8, there exists a Hölder contin-
uous function g0 on X+ satisfying Lψg0 = 0 such that {y �→ Škg0((y · z)+)}k�0 is
a martingale on X−

z and supk�0 ‖Škg0 − Škg‖∞ � c for some constant c > 0. Let
c0 = 1 + ‖g0‖∞ < ∞. In addition, with p = n− [n1/3], we have max1�j�n |Šj g0(x

′)| �
max1�j�p |Šj g0(x

′)| + c0n
1/3. With these properties, it holds that, for n large enough,

I � Jn(z) :=
∫
X

[
ϕ((T −ny · z)+)1{max1�j�p |Šj g0(y·z)|� 1

2M
√
n}

]
ν−
z (dy). (6.4)

Note that Lkψϕ(z) = ∫
X

−
z
ϕ((T −ky · z)+)ν−

z (dy)with k � 1, where Lkψ is defined by (2.3).
Moreover, by Lemma 5.1 with t = 0, for k � 1,

sup
z∈X+

|Lkψϕ(z)− ν+(ϕ)| � c′e−ck‖ϕ‖B+
α

.

By the Markov property, we have that for any z ∈ X+ and t ∈ R,

Jn(z) =
∫
X

−
z

L[n1/3]
ψ ϕ((T −py · z)+)1{

max1�j�p |Šj g0(y·z)|� 1
2M

√
n
}ν−
z (dy)

� ν+(ϕ)ν−
z

(
y ∈ X−

z : max
1�j�p

|Šj g0(y · z)| � 1
2M

√
n
) + c′e−cn1/3‖ϕ‖B+

α
. (6.5)

We apply Fuk’s inequality for martingales (Lemma 6.3) with u = 1
2M

√
n, v = c2

0
√
n and

w = (c2
0/8)Mn, so that the second and the third terms in the right-hand side of (6.3)

vanish. This gives

ν−
z

(
y ∈ X−

z : max
1�j�p

|Šj g0(y · z)| � 1
2M

√
n
)

� ν−
z

(
y ∈ X−

z : max
1�j�n

|Šj g0(y · z)| � 1
2M

√
n
)

� 2 exp
(
u

v

(
1 − log

uv

w

))
= exp

(
− M

2c2
0

log
4
e

)
.

This ends the proof of the lemma.

In order to control certain natural quantities appearing in the proof, we need the
following definitions. For ε > 0,

χε(u) = 0 for u � −ε, χε(u) = u+ ε

ε
for u ∈ (−ε, 0), χε(u) = 1 for u � 0. (6.6)

Denote χε(u) = 1 − χε(u) and note that

χε(t − ε) � 1(0,∞)(t) � χε(t), χε(t) � 1(−∞,0](t) � χε(t − ε). (6.7)

LEMMA 6.5. Let α ∈ (0, 1) and g ∈ B+
α be such that ν+(g) = 0. Assume that g is not

a coboundary. Let κ be a smooth compactly supported function on R and ε > 0. Then
there exists a constant c > 0 such that for any G ∈ H +

α and any m � 1, the function Am
defined on X+ × R by
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Am(z, t) :=
∫
X

−
z

G ∗ κ((T −my · z)+, t + Šmg(y · z))

× χε(t − ε + min
1�j�m

Šjg(y · z))ν−
z (dy),

belongs to H +
α and satisfies

‖Am‖ν+⊗Leb �
∫
R

|κ(t)| dt‖G‖ν+⊗Leb, ‖Am‖H +
α

� c

ε
‖G‖H +

α
.

Proof. For the first inequality, we write

|Am(z, t)| �
∫
X

−
z

|G ∗ κ|((T −my · z)+, t + Šmg(y · z))ν−
z (dy),

which gives

‖Am‖ν+⊗Leb �
∫
X×R

|G ∗ κ|((T −mx)+, t + Šmg(x))ν(dx) dt

=
∫
X×R

|G ∗ κ|(x+, t)ν(dx) dt �
∫
R

|κ(t)| dt‖G‖ν+⊗Leb.

This finishes the proof of the first inequality.
For the second inequality, recall that

‖Am‖H +
α

=
∫
R

sup
z∈X+

|Am(z, t)| dt +
∫
R

sup
z,z′∈X+

|Am(z, t)− Am(z
′, t)|

αω(z,z
′) dt .

We pick c0 > 0 as in Lemma 2.9 and for t ∈ R we set κ1(t) = sup|s|�c0
|κ(t + s)| and

H(t) = supz∈X+ |G(z, t)|. We get for z, z′ ∈ X+ with z0 = z′0 and t ∈ R,

|Am(z, t)| �
∫
X

−
z

H ∗ κ1(t + Šmg(y · z′))ν−
z (dy).

By Lemma 2.3, we get

|Am(z, t)| � c

∫
X

−
z′
H ∗ κ1(t + Šmg(y · z′))ν−

z′ (dy),

for some constant c. By integrating over z′, we get

|Am(z, t)| � c′
∫
X

H ∗ κ1(t + Šmg(x))ν(dx).

By integrating over t, it follows that∫
R

sup
z∈X+

|Am(z, t)| dt � c′
∫
R

H ∗ κ1(t) dt = c′
∫
R

|κ1(t)| dt
∫
R

H(t) dt .

Now we dominate the second term in the norm ‖Am‖H +
α

. For t ∈ R, set κ2(t) =
sup|s|�c0

|κ ′(t + s)|, where c0 is the constant from Lemma 2.9. We get for |t − t ′| � c0

and z ∈ X+,

|G ∗ κ(z, t)−G ∗ κ(z, t ′)| � |t − t ′|H ∗ κ2(t).
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Hence, for z, z′, z′′ ∈ X+ with z0 = z′0 = z′′0 and t ∈ R,

I1(z, z′, t) :=
∣∣∣∣Am(z, t)−

∫
X

−
z

G ∗ κ((T −my · z)+, t + Šmg(y · z′))

× χε(t − ε + min
1�j�m

Šjg(y · z))ν−
z (dy)

∣∣∣∣
� cαω(z,z

′)
∫
X

−
z

H ∗ κ2(t + Šmg(y · z))ν−
z (dy)

� cαω(z,z
′)

∫
X

−
z

H ∗ κ3(t + Šmg(y · z′′))ν−
z (dy)

� c1α
ω(z,z′)

∫
X

−
z′′
H ∗ κ3(t + Šmg(y · z′′))ν−

z′′(dy),

where κ3(t) = sup|s|�c0
|κ2(t + s)| with c0 from Lemma 2.9; for the second inequality we

have applied Lemma 2.9 and for the last inequality we have used Lemma 2.3. Again by
integrating over z′′, we get that

I1(z, z′, t) � c2α
ω(z,z′)

∫
X

H ∗ κ3(t + Šmg(x))ν(dx). (6.8)

In addition, as G is in H +
α , the function L(t) = supz,z′∈X+ α−ω(z.z′)|G(z, t)−G(z′, t)| is

integrable on R and for z, z′ ∈ X+ with z0 = z′0 and t ∈ R, we have

I2(z, z′, t) :=
∣∣∣∣ ∫

X
−
z

[
G ∗ κ((T −my · z)+, t + Šmg(y · z′))

−G ∗ κ((T −my · z′)+, t + Šmg(y · z′))
]

× χε(t − ε + min
1�j�m

Šjg(y · z))ν−
z (dy)

∣∣∣∣
� αω(z.z

′)
∫
X

−
z

L ∗ κ(t + Šmg(y · z′))ν−
z (dy)

� cαω(z.z
′)

∫
X

L ∗ κ1(t + Šmg(x))ν(dx), (6.9)

where we have again used Lemmas 2.3 and 2.9.
As χε is 1/ε-Lipschitz continuous on R, by reasoning in the same way and using

Corollary 2.10, we get

I3(z, z′, t) : =
∣∣∣∣ ∫

X
−
z

G ∗ κ((T −my · z′)+, t + Šmg(y · z′))

×
[
χε(t−ε+ min

1�j�m
Šjg(y · z))−χε(t−ε+ min

1�j�m
Šjg(y · z′))

]
ν−
z (dy)

∣∣∣∣
� c

ε
αω(z.z

′)
∫
X

H ∗ κ1(t + Šmg(x))ν(dx). (6.10)
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By Lemma 2.3, we have

I4(z, z′, t) :=
∣∣∣∣ ∫

X
−
z

G ∗ κ((T −my · z′)+, t + Šmg(y · z′))

× χε(t − ε + min
1�j�m

Šjg(y · z′))ν−
z (dy)− Am(z

′, t)
∣∣∣∣

� cαω(z.z
′)

∫
X

H ∗ κ1(t + Šmg(x))ν(dx). (6.11)

Putting (6.8), (6.9), (6.10) and (6.11) together, and integrating over t ∈ R, yields the
required domination.

6.3. Proof of the upper bound. We prove the inequality (6.1) in Theorem 6.1. It is
enough to prove (6.1) only for sufficiently large n > n0(ε), where n0(ε) depends on ε,
otherwise the bound becomes trivial.

Without loss of generality, we assume that σg = 1. Let ε ∈ (0, 1
8 ). With δ = √

ε, set
m = [δn] and k = n−m. Note that 1

2δ � m/k � δ/(1 − δ) for n � 2/
√
ε. Denote, for

z ∈ X+ and t ∈ R,

�n(z, t) =
∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy).

By the Markov property, we have that for any z ∈ X+ and t ∈ R,

�n(z, t) =
∫
X

−
z

�m((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy). (6.12)

By bounding the indicator function by 1{t+Šmg(y·z)�0} in the definition of �m, we get

�m(z, t) �
∫
X

−
z

F ((T −my · z)+, t + Šmg(y · z))1{t+Šmg(y·z)�0}ν
−
z (dy) =: Jm(z, t).

(6.13)

Let Gε(z, u) = G(z, u)χε(u− ε) for z ∈ X+ and u ∈ R, where ε ∈ (0, 1) and χε is
defined in (6.6). By the local limit theorem (cf. Theorem 5.8), there exist constants
c, cε > 0 such that for any m � 1, z ∈ X+ and t ∈ R,

Jm(z, t) � Hm(t)+ cε√
m

‖Gε‖ν+⊗Leb + cε

m
‖Gε‖H +

α
, (6.14)

where, for brevity, we set

Hm(t) =
∫
X+

∫
R

Gε(z, u)
1√
m
φ

(
u− t√
m

)
duν+(dz). (6.15)

Using (6.12), (6.13) and (6.14), and Lemma 4.1, we get that uniformly in z ∈ X+ and t � t0,

�n(z, t) �
∫
X

−
z

Hm(t + Škg(y · z))1{τ̌ gt (y·z)>k}ν
−
z (dy)

+ cε√
mk

‖Gε‖ν+⊗Leb + cε

m
√
k
‖Gε‖H +

α
. (6.16)
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Now we deal with the first term on the right-hand side of (6.16). DenoteLm(s) = Hm(
√
ks)

for s ∈ R. We have

Lm(s) =
∫
X+

∫
R

Gε(z,
√
ku)

1√
m/k

φ

(
s − u√
m/k

)
duν+(dz). (6.17)

As the function s �→ Lm(s) is differentiable on R and vanishes as s → −∞, using
integration by parts, we have, for any z ∈ X+ and t ∈ R,

Hm,k(z, t) : =
∫
X

−
z

Hm(t + Škg(y · z))1{τ̌ gt (y·z)>k}ν
−
z (dy)

=
∫
X

−
z

Lm

(
t + Škg(y · z)√

k

)
1{τ̌ gt (y·z)>k}ν

−
z (dy)

=
∫
R+
L′
m(s)ν

−
z

(
t + Škg(y · z)√

k
> s, τ̌ gt (y · z) > k

)
ds. (6.18)

Applying the conditioned central limit theorem (see Lemma 4.6), we have

Hm,k(z, t) �
2V̌ g(z, t)√

2πk

∫
R+
L′
m(s)(1 −	+(s)) ds + rk

k1/2

∫
R+

|L′
m(s)| ds, (6.19)

where rk → 0 as k → ∞ and by 	+ we denoted the Rayleigh cumulative distribution
function (1.7). By (6.17), we have∫

R+
|L′
m(s)|ds =

∫
X+

∫
R

∫
R

Gε

(
z,

√
m

u√
m/k

)
φ′

(
s − u√
m/k

)
du√
m/k

ds√
m/k

ν+(dz)

=
∫
X+

∫
R

∫
R

Gε(z,
√
mu)φ′(s − u) ds duν+(dz)

� c

∫
X+

∫
R

Gε(z,
√
mu) duν+(dz) = c√

m
‖Gε‖ν+⊗Leb. (6.20)

By integration by parts and a change of variable, we have∫
R+
L′
m(s)(1 −	+(s)) ds =

∫
R+
Hm(s)φ

+
(
s√
k

)
ds√
k

.

Hence, from (6.18), (6.19) and (6.20), we obtain

Hm,k(z, t) �
2V̌ g(z, t)√

2πk

∫
R+
Hm(s)φ

+
(
s√
k

)
ds√
k

+ rk√
km

‖Gε‖ν+⊗Leb. (6.21)

Implementing this bound into (6.16) and using the fact that ‖Gε‖ν+⊗Leb � ‖G‖ν+⊗Leb and
‖Gε‖H +

α
� ‖G‖H +

α
, we get, uniformly in z ∈ X+ and t � t0,

�n(z, t) �
2V̌ g(z, t)√

2π
Im,k + cε + rk√

km
‖Gε‖ν+⊗Leb + cε

m
√
k
‖Gε‖H +

α

� 2V̌ g(z, t)√
2π

Im,k + cε + rk√
km

‖G‖ν+⊗Leb + cε

m
√
k
‖G‖H +

α
, (6.22)
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where

Im,k = 1√
k

∫
R+
Hm(s)φ

+
(
s√
k

)
ds√
k

.

By the definition of Hm (cf. (6.15)) and Fubini’s theorem, it follows that

Im,k =
∫
R+

∫
X+

∫
R

φ√
m(u− s)Gε(z, u) duν+(dz)φ+

(
s√
k

)
ds

k

=
∫
X+

∫
R

Gε(z, u)
[ ∫

R+
φ√

m(u− s)φ+
(
s√
k

)
ds

k

]
duν+(dz).

Denote δn = m/n = [δn]/n. By a change of variable, we have

Im,k = 1√
n

∫
X+

∫
R

Gε(z,
√
nu)

[ ∫
R+
φδn(u− s)φ+

1−δn(s) ds
]
duν+(dz)

= 1√
n

∫
X+

∫
R

Gε(z,
√
nu)φδn ∗ φ+

1−δn(u) duν
+(dz)

= 1
n

∫
X+

∫
R

Gε(z, u)φδn ∗ φ+
1−δn

(
u√
n

)
duν+(dz)

= 1
n

∫
X+

∫ ∞

−ε
Gε(z, u)φδn ∗ φ+

1−δn

(
u√
n

)
duν+(dz), (6.23)

where in the last line we used the fact that Gε(z, u) = 0 for any z ∈ X+ and u � −ε. We
handle the convolution φδn ∗ φ+

1−δn using Lemma 6.2 together with the fact that δn = m/n,
1 − δn = k/n and u � −ε:

φδn ∗ φ+
1−δn

(
u√
n

)
�

√
1 − δnφ

+
(
u√
n

)
+ √

δne
−u2/2nδn + | u√

n
|e−u2/2n1{u<0}

=
√
k

n
φ+

(
u√
n

)
+

√
m

n
e−u2/2m +

∣∣∣∣ u√n
∣∣∣∣e−u2/2n1{u<0}

�
√
k

n
φ+

(
u√
n

)
+

√
m

n
+ ε√

n
.

As Gε � G, it follows that

Im,k �
√
k

n3/2

∫
X+

∫
R

G(z, u)φ+
(
u√
n

)
duν+(dz)

+
√
m

n3/2

∫
X+

∫
R

G(z, u) duν+(dz)+ ε

n3/2

∫
X+

∫ 0

−∞
G(z, u) duν+(dz)

�
√
k

n3/2

∫
X+

∫
R

G(z, u)φ+
(
u√
n

)
duν+(dz)+ 2ε1/4

n
‖G‖ν+⊗Leb.
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Substituting this into (6.22), and using the fact that V̌ g(z, t) � t + c gives

�n(z, t) �
2V̌ g(z, t)√

2π

√
k

n3/2

∫
X+

∫
R

G(z, u)φ+
(
u√
n

)
duν+(dz)

+ c

(
cε + rk√
mk

+ ε1/4

n

)
‖G‖ν+⊗Leb + cε

m
√
k
‖G‖H +

α
.

As ε1/2n � m � 1
2ε

1/2n and n > k � 1
2n, we obtain

�n(z, t) �
2V̌ g(z, t)√

2πn

∫
X+

∫
R

G(z, u)φ+
(
u√
n

)
duν+(dz)

+ c

n

(
ε1/4 + rn

ε1/4

)
‖G‖ν+⊗Leb + cε

n3/2 ‖G‖H +
α

,

which finishes the proof of the upper bound (6.1).

6.4. Proof of the lower bound. We now proceed to prove the second assertion (6.2) of
Theorem 6.1. We use the same notation as that in the proof of the upper bound. Recall that
δ = √

ε, m = [δn] and k = n−m. For z ∈ X+, t ∈ R and n � 1, denote

�n(z, t) : =
∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy).

Note that�n(z, t) = 0 for t � −c0 = −‖g‖∞ because 1{τ̌ gt (y·z)>n} = 0 for these values of
t, and therefore in the following we can consider that t � t0. By the Markov property, we
have that for any z ∈ X+ and t ∈ R,

�n(z, t) =
∫
X

−
z

�m((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy). (6.24)

We write �m as a sum of two terms: for any z ∈ X+ and t ∈ R,

�m(z, t) = Am(z, t)− Am(z, t), (6.25)

where

Am(z, t) =
∫
X

−
z

F ((T −my · z)+, t + Šmg(y · z))ν−
z (dy), (6.26)

Am(z, t) =
∫
X

−
z

F ((T −my · z)+, t + Šmg(y · z))1{τ̌ gt (y·z)�m}ν
−
z (dy). (6.27)

This implies that for any z ∈ X+ and t ∈ R,

�n(z, t) = Jn(z, t)−Kn(z, t), (6.28)

where

Jn(z, t) :=
∫
X

−
z

Am((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy), (6.29)

Kn(z, t) :=
∫
X

−
z

Am((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy). (6.30)
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We proceed to give a lower bound for the term Jn(z, t) in (6.28). It can be handled as
the case of the upper bound, but here the situation is more complicated. By the local limit
theorem (cf. Theorem 5.8), we get that there exist constants c, cε > 0 such that for any
m � 1, z ∈ X+ and t ∈ R,

Am(z, t) � Hm(t)− cε√
m

‖G‖ν+⊗Leb − cε

m
(‖G‖H +

α
+ ‖H‖H +

α
), (6.31)

where, for brevity, we set

Hm(t) =
∫
X+

∫
R

1√
m
φ

(
u− t√
m

)
H(z, u) duν+(dz). (6.32)

Using (6.26), (6.29) and (6.31), and Lemma 4.1, we get that for any z ∈ X+ and t ∈ R,

Jn(z, t) �
∫
X

−
z

Hm(t + Škg(y · z))1{τ̌ gt (y·z)>k}ν
−
z (dy)

− cε√
km

‖G‖ν+⊗Leb − cε√
km
(‖G‖H +

α
+ ‖H‖H +

α
). (6.33)

For the first term on the right-hand side of (6.33), proceeding in the same way as that in
the proof of (6.21), using the lower bound in the conditioned central limit theorem (see
Lemma 4.6), one can verify that∫

X
−
z

Hm(t + Škg(y · z))1{τ̌ gt (y·z)>k}ν
−
z (dy)

� 2V̌ g(z, t)√
2πk

∫
R+
Hm(s)φ

+
(
s√
k

)
ds√
k

− rk√
km

‖H‖ν+⊗Leb. (6.34)

Implementing this bound into (6.33), we get that for any z ∈ X+,

Jn(z, t) �
2V̌ g(z, t)√

2π
Im,k − rk√

km
‖H‖ν+⊗Leb

− cε√
km

‖G‖ν+⊗Leb − cε√
km
(‖G‖H +

α
+ ‖H‖H +

α
), (6.35)

where

Im,k :=
∫
R+
Hm(s)φ

+
(
s√
k

)
ds

k
.

In the same way as in the proof of (6.23), we have

Im,k = 1
n

∫
X+

∫
R

H(z, u)φδn ∗ φ+
1−δn

(
u√
n

)
duν+(dz)

� 1
n

∫
X+

∫ ∞

0
H(z, u)φδn ∗ φ+

1−δn

(
u√
n

)
duν+(dz)

�
√
k

n3/2

∫
X+

∫
R

H(z, u)φ+
(
u√
n

)
duν+(dz),
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where in the last inequality we applied Lemma 6.2 and the fact that φ+(u) = 0 for
u < 0. Substituting this into (6.35), and using the fact that H �ε G and V̌ g(z, t) � t + c,
we get

Jn(z, t) �
2V̌ g(z, t)√

2π

√
k

n3/2

∫
X+

∫
R

H(z, u)φ+
(
u√
n

)
duν+(dz)

− cε + rk√
km

‖G‖ν+⊗Leb − cε√
km
(‖G‖H +

α
+ ‖H‖H +

α
).

As
√
n/k � 1 + cε1/4, m � 1

2ε
1/2n and k � 1

2n, using again H �ε G we deduce that for
n sufficiently large,

Jn(z, t) �
2V̌ g(z, t)√

2πn

∫
X+

∫
R

H(z, u)φ+
(
u√
n

)
duν+(dz)

− c

n

(
ε1/4 + rn

ε1/4

)
‖G‖ν+⊗Leb − cε

n3/2 (‖G‖H +
α

+ ‖H‖H +
α
). (6.36)

We now deal with Kn(z, t) which is the second term in (6.28). Bounding Kn(z, t) is
one of the difficult points of the paper and needs to make use of the duality. We start by
splitting Kn(z, t) into two parts according to whether the values of t + Škg(y · z) are less
or larger than ε

√
n: for z ∈ X+ and t ∈ R,

Kn(z, t) = K1 +K2, (6.37)

where

K1 =
∫
X

−
z

Am((T
−ky · z)+, t + Škg(y · z))1{t+Škg(y·z)�ε1/6√n}1{τ̌ gt (y·z)>k}ν

−
z (dy),

K2 =
∫
X

−
z

Am((T
−ky · z)+, t + Škg(y · z))1{t+Škg(y·z)>ε1/6√n}1{τ̌ gt (y·z)>k}ν

−
z (dy).

ForK1, using the upper bound in the local limit theorem (cf. Theorem 5.8) and taking into
account that φ � 1, we get

Am(z, t) �
Lm(ε)√
m

, where Lm(ε) = c‖G‖ν+⊗Leb + cε√
m

‖G‖H +
α

.

This and the fact that
√
n/k � c imply

K1 � Lm(ε)√
m

∫
X

−
z

1{t+Škg(y·z)�ε1/6√n}1{τ̌ gt (y·z)>k}ν
−
z (dy)

� Lm(ε)√
m

ν−
z

(
t + Škg(y · z)√

k
� cε1/6, τ̌ gt (y · z) > k

)
.
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Using Lemma 4.6 and the fact that m = [ε1/2n], we get that uniformly in z ∈ X+,

K1 � Lm(ε)√
m

(
2V̌ g(z, t)√

2πk

∫ cε1/6

0
φ+(t ′) dt ′ + o(1)

k1/2

)
� Lm(ε)√

mk

( ∫ cε1/6

0
φ+(t ′) dt ′ + o(1)

)
� c

Lm(ε)

ε1/4n
(ε1/3 + o(1))

� c
Lm(ε)

n

(
ε1/12 + o(1)

ε1/4

)
= c

n

(
‖G‖ν+⊗Leb + cε√

m
‖G‖H +

α

)(
cε1/12 + o(1)

ε1/4

)
� c

n

(
ε1/12 + o(1)

ε1/4

)
‖G‖ν+⊗Leb + cε

n3/2 ‖G‖H +
α

. (6.38)

We proceed to give an upper bound forK2, see (6.37). Recall that the function (z, t) �→
Am(z, t), which is involved in the definition of K2, is defined by (6.27) and does not,
in general, belong to the space H +

α . We start by smoothing the indicator function in
(6.27). Let κ be a non-negative smooth compactly supported function in [−1, 1] such that∫ 1
−1 κ(u) du = 1 and set κε(u) = (1/ε)κ(u/ε) for u ∈ R. Define

Am,ε(z, t) :=
∫
X

−
z

G ∗ κε/2((T −my · z)+, t + Šmg(y · z))

× χε

(
t − ε + min

1�j�m
Šjg(y · z)

)
ν−
z (dy),

where χε is the same as in (6.6) and χε = 1 − χε. Note that the function F is
ε/2-dominated by the function G ∗ κε/2. By the identity

1{τ̌ gt (y·z)>m} = 1[0,∞)(t + min
1�j�m

Šjg(y · z)), (6.39)

using the bounds (6.7) and F(z, ·) � G ∗ κε/2(z, ·), we get that the function Am is
ε/2-dominated by the function Am,ε. Moreover, by Lemma 6.5, there exists a constant
cε such that for any m � 1, the function Am,ε belongs to H +

α and satisfies

‖Am,ε‖H +
α

� cε‖G‖H +
α

, ‖Am,ε‖ν+⊗Leb � ‖G‖ν+⊗Leb.

Denote

Wm,ε(z, t) = Am,ε(z, t)1{t�ε1/6√n}. (6.40)

Using the upper bound (6.1) and the fact that φ+ � 1, we obtain

K2 �
∫
X

−
z

Wm,ε((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy)

�
(

2V̌ g(z, t)√
2πk

+ c

k

(
ε1/4 + rn

ε1/4

))
‖Wm,ε‖ν+⊗Leb + cε√

nk
‖Wm,ε‖H +

α
. (6.41)
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For the first term on the right-hand side of (6.41), by the definition of Wm,ε and Fubini’s
theorem, we have

‖Wm,ε‖ν+⊗Leb =
∫
X+

∫
R

Wm,ε(z
′, u) duν+(dz′)

�
∫
X

∫
R

[G ∗ κε/2((T −mx)+, u+ Šmg(x))

× 1{u+min1�j�m Šj g(x)�0}1{u�ε1/6√n}]ν(dx) du =: U . (6.42)

Using the duality (Lemma 2.12) yields that

U =
∫
X

∫
R

[G ∗ κε/2(x′+, u′)1{u′−min1�j�m Sj g(x′)�0}1{u′−Smg(x′)�ε1/6√n}]ν(dx′) du′.

As the measure ν is T-invariant, it follows that

U =
∫
X

∫
R

[G ∗ κε/2((T −mx′)+, u′)1{u′−min1�j�m Sj g(T −mx′)�0}

× 1{u′−Smg(T −mx′)�ε1/6√n}]ν(dx′) du′

=
∫
X

∫
R

[G ∗ κε/2((T −mx′)+, u′)1{u′−Šmg(x′)+max1�j�m Šm−j g(x′)�0}

× 1{u′−Šmg(x′)�ε1/6√n}]ν(dx
′) du′

�
∫
X

∫
R

[G ∗ κε/2((T −mx′)+, u′)1{max1�j�m Šj g(x′)�−ε1/6√n}]ν(dx
′) du′

=
∫
R

∫
X+

∫
X

−
z

[G ∗ κε/2((T −my · z)+, u′)1{max1�j�m |Šj g(y·z)|�ε1/6√n}]

× ν−
z (dy)ν

+(dz) du′, (6.43)

where for the last line we made use of Lemma 2.2. By the Fuk inequality of Lemma 6.4
with M = ε−1/12 and ε small enough, it follows that∫

X
−
z

[G ∗ κε/2((T −my · z)+, u′)1{max1�j�m |Šj g(y·z)|�ε1/6√n}]ν
−
z (dy)

�
∫
X

−
z

[G ∗ κε/2((T −my · z)+, u′)1{max1�j�m |Šj g(y·z)|�M√
m}]ν

−
z (dy)

� 2e−cε−1/12
∫
X+
G ∗ κε/2(z, u′)ν+(dz)+ c′e−cε1/6n1/3‖G ∗ κε/2(·, u′)‖B+

α
.

Implementing this into (6.43), by (6.42), we have

‖Wm,ε‖ν+⊗Leb � 2e−cε−1/12
∫
R

∫
X+
G ∗ κε/2(z, u′)ν+(dz) du′

+ c′e−cε1/6n1/3
∫
R

‖G ∗ κε/2(·, u′)‖B+
α
du′

� c

∫
R

κε/2(u
′) du′e−cε−1/12‖G‖ν+⊗Leb + c′ε−1e−cε1/6n1/3‖G‖H +

α

� ce−cε−1/12‖G‖ν+⊗Leb + c′ε−1e−cε1/6n1/3‖G‖H +
α

, (6.44)

where for the last line we made use of bounds similar to those in Lemma 6.5.
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The norm ‖Wm,ε‖H +
α

in the second term on the right-hand side of (6.41) is bounded
using Lemma 6.5. Taking into account (6.40), we get

‖Wm,ε‖H +
α

� ‖Am,ε‖H +
α

� cε‖G‖H +
α

. (6.45)

Therefore, from (6.41), (6.44) and (6.45), we derive the upper bound for K2: uniformly in
z ∈ X+ and t � t0,

K2 � 2
(

2V̌ g(z, t)√
2πn

+ c

n

(
ε1/4 + rn

ε1/4

))
exp(−cε−1/12)‖G‖ν+⊗Leb + cε

n3/2 ‖G‖H +
α

� cε1/4

n
‖G‖ν+⊗Leb + cε

n3/2 ‖G‖H +
α

. (6.46)

Combining (6.28), (6.36), (6.37), (6.38) and (6.46), the lower bound (6.2) follows.

7. Proof of Theorem 1.7
As for Theorems 1.3 and 1.5, we first establish the result when g is in B+. The general
case of a function g in B will follow using the same method as in §4.

THEOREM 7.1. Let g ∈ B+ be such that ν+(g) = 0. Assume that for any p 	= 0 and q ∈
R, the function pg + q is not cohomologous to a function with values in Z. Let F be a
continuous compactly supported function on X+ × R. Then, we have, uniformly in z ∈ X+
and t in a compact subset of R,

lim
n→∞ n3/2

∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X×R

F(x′+, t ′)μ(−g)(dx′, dt ′).

In the proof of this theorem, we make use of several technical lemmas which are stated
in the following. We say that a function G on X+ × R is α-regular if there is a constant c
such that for any (z, t) and (z′, t ′) in X+ × R, we have |G(z, t)−G(z′, t ′)| � c(|t − t ′| +
αω(z,z

′)). In other words, a function is α-regular if and only if it is Lipschitz continuous
on X+ × R when R is equipped with the standard distance and X+ is equipped with the
distance (z, z′) �→ αω(z,z

′). The following result is similar to Lemma 6.5. It will allow us
to smooth certain functions appearing in the proof of Theorem 7.1 in order to be able to
apply Theorem 6.1. Recall that for ε ∈ (0, 1), χε(u) = 0 for u � −ε, χε(u) = (u+ ε)/ε

for u ∈ (−ε, 0), and χε(u) = 1 for u � 0.

LEMMA 7.2. Let α ∈ (0, 1) and g ∈ B+
α be such that ν+(g) = 0. Assume that g is not

a coboundary. Let G be an α-regular function with compact support on X+ × R. For
(z, t) ∈ X+ × R, m � 1 and ε > 0, define

�m,ε(z, t) : =
∫
X

−
z

G((T −my · z)+, t + Šmg(y · z))

× χε(t + ε + min
1�j�m

Šjg(y · z))ν−
z (dy).

Then �m,ε ∈ H +
α and ‖�m,ε‖H +

α
� c/ε

√
m.
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Proof. It is enough to prove the lemma for a non-negative function G. Recall that

‖�m,ε‖H +
α

=
∫
R

sup
z∈X+

|�m,ε(z, t)| dt +
∫
R

sup
z,z′∈X+

|�m,ε(z, t)−�m,ε(z
′, t)|

αω(z,z
′) dt .

By Corollary 4.5, the first term is dominated by c/
√
m for some constant c > 0.

For the second term, we start by noting that by Lemma 2.9, there exists a constant c0 > 0
such that for any z, z′ ∈ X+ with z0 = z′0, t ∈ R and y ∈ X−

z ,

χε(t + ε + min
1�j�m

Šjg(y · z))− χε(t + ε + min
1�j�m

Šjg(y · z′))

= (χε(t + ε + min
1�j�m

Šjg(y · z))− χε(t + ε + min
1�j�m

Šjg(y · z′)))
× 1{t+min1�j�m Šj g(y·z)�−c0}

� 1
ε
| min

1�j�m
Šjg(y · z)− min

1�j�m
Šjg(y · z′)|1{t+min1�j�m Šj g(y·z)�−c0}

� c1

ε
αω(z,z

′)1{t+min1�j�m Šj g(y·z)�−c0},

where in the last inequality we used Corollary 2.10. It follows that∫
X

−
z

G((T −my · z)+, t + Šmg(y · z))

× |χε(t + ε + min
1�j�m

Šjg(y · z))− χε(t + ε + min
1�j�m

Šjg(y · z′))|ν−
z (dy)

� c1

ε
αω(z,z

′)
∫
X

−
z

G((T −my · z)+, t + Šmg(y · z))1{t+min1�j�m Šj g(y·z)�−c0}ν
−
z (dy).

By using again Corollary 4.5, we get∫
R

sup
z,z′∈X+:z0=z′0

α−ω(z,z′)
∫
X

−
z

G((T −my · z)+, t + Šmg(y · z))

× |χε(t + ε + min
1�j�m

Šjg(y · z))− χε(t + ε + min
1�j�m

Šjg(y · z′))|ν−
z (dy)

� c2

ε
√
m

. (7.1)

In addition, as G is α-regular and has compact support, we have for any z, z′ ∈ X+ with
z0 = z′0, and t ∈ R, by Lemma 2.9,∫

X
−
z

|G((T −my · z)+, t + Šmg(y · z))−G((T −my · z′)+, t + Šmg(y · z′))|

× χε(t + ε + min
1�j�m

Šjg(y · z′))ν−
z (dy)

� c3α
ω(z,z′)H(t)ν−

z (y ∈ X−
z : t + c′ + min

1�j�m
Šjg(y · z) � 0),
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for some compactly supported continuous function H on R and some c′ > 0. Again by
Corollary 4.5, we get∫

R

sup
z,z′∈X+:z0=z′0

α−ω(z,z′)

×
∫
X

−
z

|G((T −my · z)+, t + Šmg(y · z))−G((T −my · z′)+, t + Šmg(y · z′))|

× χε(t + ε + min
1�j�m

Šjg(y · z′))ν−
z (dy) dt �

c4√
m

. (7.2)

Finally, for any z, z′ ∈ X+ with z0 = z′0, t ∈ R, we have∫
X

−
z

G((T −my · z′)+, t + Šmg(y · z′))χε(t + ε + min
1�j�m

Šjg(y · z′))ν−
z (dy)

=
∫
X

−
z′
G((T −my · z′)+, t + Šmg(y · z′))χε(t + ε + min

1�j�m
Šjg(y · z′))eθ(y,z′,z)ν−

z′ (dy),

where θ is as in Lemma 2.3. By the Hölder continuous domination of θ in Lemma 2.3, we
derive that∫

R

sup
z,z′∈X+:z0=z′0

α−ω(z,z′)

×
∣∣∣∣ ∫

X
−
z

G((T −my · z′)+, t + Šmg(y · z′))χε(t + ε + min
1�j�m

Šjg(y · z′))ν−
z (dy)

−
∫
X

−
z′
G((T −my · z′)+, t + Šmg(y · z′))χε(t + ε + min

1�j�m
Šjg(y · z′))ν−

z′ (dy)

∣∣∣∣ dt
� c4

∫
R

sup
z′∈X+

∫
X

−
z′
G((T −my ·z′)+, t+ Šmg(y · z′))χε(t+ε+ min

1�j�m
Šjg(y · z′))ν−

z′ (dy)dt

� c5√
m

, (7.3)

where the last inequality follows from Corollary 4.5. Putting together (7.1), (7.2) and (7.3)
gives ∫

R

sup
z,z′∈X+:z0=z′0

|�m,ε(z, t)−�m,ε(z
′, t)|

αω(z,z
′) dt � c6

ε
√
m

.

The lemma follows.

Now we write a technical version of Theorem 7.1.

LEMMA 7.3. Let α ∈ (0, 1) and g ∈ B+
α be such that ν+(g) = 0. Assume that for any

p 	= 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z.
Let t ∈ R. Then, for any ε ∈ (0, 1

8 ) and z ∈ X+, and for any non-negative function F and
non-negative α-regular compactly supported functionsG, H satisfyingH �ε F �ε G, we
have
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lim sup
n→∞

n3/2
∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

� 2V̌ g(z, t)

σ 3
g

√
2π

∫
X

∫
R

G(x+, t)μ(−g)(dx, dt) (7.4)

and

lim inf
n→∞ n3/2

∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

� 2V̌ g(z, t)

σ 3
g

√
2π

∫
X

∫
R

H(x+, t)μ(−g)(dx, dt). (7.5)

Proof. We first prove (7.4). As in (6.24), denote, for z ∈ X+ and t ∈ R,

�n(z, t) =
∫
X

−
z

F ((T −ny · z)+, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy).

Set m = [n/2] and k = n−m. By the Markov property we have that for any z ∈ X+ and
t ∈ R,

�n(z, t) =
∫
X

−
z

�m((T
−ky · z)+, t + Škg(y · z))1{τ̌ gt (y·z)>k}ν

−
z (dy). (7.6)

For any z′ ∈ X+ and t ′ ∈ R, we set

�m(z
′, t ′) : =

∫
X

−
z′
G((T −my · z′)+, t ′ + Šmg(y · z′))

× χε(t
′ + ε + min

1�j�m
Šjg(y · z′))ν−

z′ (dy).

By using F �ε G, we get that �m �ε �m. Note that by Lemma 7.2, the function �m
belongs to the space H +

α , so that we are exactly in the setting of Theorem 6.1. Therefore,
using the bound (6.1) of Theorem 6.1, we get

�n(z, t) �
2V̌ g(z, t)

σ 2
g

√
2πk

∫
X+

∫
R+
�m(z

′, u′)φ+
(

u′

σg
√
k

)
du′ν+(dz′)

+ c

k

(
ε1/4 + rk

ε1/4

)
‖�m‖ν+⊗Leb + cε

k3/2 ‖�m‖H +
α

=: J1 + J2 + J3.

For J1, applying the duality (Lemma 2.12), we deduce that∫
X+

∫
R+
�m(z, u)φ+

(
u

σg
√
k

)
duν+(dz)

�
∫
X+

∫
R+

∫
X

−
z

G((T −my · z)+, u+ Šmg(y · z))

× 1{τ̌ g
u+2ε(y·z)>m−1}ν

−
z (dy)φ

+
(

u

σg
√
k

)
duν+(dz)
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=
∫
X

∫
R+
G((T −mx)+, u+ Šmg(x))φ

+
(

u

σg
√
k

)
1{τ̌ g

u+2ε(x)>m−1} duν(dx)

=
∫
X

∫
R

G(x+, t − 2ε)φ+
(
t − Smg(x)− 2ε

σg
√
k

)
1{τ−g

t (x)>m−1} dtν(dx).

Using the conditioned central limit theorem (Theorem 1.5), we get

lim
n→∞ σg

√
2πm

∫
X

∫
R

G(x+, t − 2ε)φ+
(
t − Smg(x)− 2ε

σg
√
k

)
1{τ−g

t (x)>m−1} dtν(dx)

= 2
∫
X

∫
R

G(x+, t − 2ε)μ−g(dx, dt)
∫
R+
(φ+(t ′))2 dt ′

=
√
π

2

∫
X

∫
R

G(x+, t − 2ε)μ(−g)(dx, dt).

Therefore, we obtain

lim
n→∞ n3/2J1 = 2V̌ g(z, t)

σ 3
g

√
2π

∫
X

∫
R

G(x+, t − 2ε)μ(−g)(dx, dt).

For J2, by Corollary 4.5, we have

‖�m‖ν+⊗Leb � c√
m

.

Taking into account that m = [n/2] and k = n−m, we get lim supn→∞ n3/2J2 � cε1/4.
For J3, by Lemma 7.2, we have limn→∞ n3/2J3 = 0. This finishes the proof of the upper

bound. The proof of the lower bound can be carried out in the same way.

From Lemma 7.3, we get Theorem 7.1 by a standard approximation procedure.

LEMMA 7.4. Fix α ∈ (0, 1). Let F be a non-negative continuous compactly supported
function on X+ × R. Then, there exist a decreasing sequence (Gk)k�1 and an increasing
sequence (Hk)k�1 of compactly supported α-regular functions, such thatHk �1/k F �1/k

Gk for any k � 1, and Gk and Hk converge uniformly to F as k → ∞.

Proof of Theorem 7.1. This follows directly from Lemmas 7.3 and 7.4.

From Theorem 7.1 we deduce a new lemma in which the target function F may depend
on the past coordinates.

LEMMA 7.5. Let g ∈ B+ be such that ν+(g) = 0. Assume that for any p 	= 0 and q ∈ R,
the function pg + q is not cohomologous to a function with values in Z. Let F be a
continuous compactly supported function on X × R. Then, uniformly in z ∈ X+ and t in a
compact subset of R,

lim
n→∞ n3/2

∫
X

−
z

F (T −n(y · z), t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X×R

F(x′, t ′)μ(−g)(dx′, dt ′).
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Proof. As in the proof of Lemma 4.7, it suffices to prove this result when F is of the form
(x, t) �→ 1CaF1(x+, t), where a ∈ A{−m,...,−1} satisfies M(ai−1, ai) = 1 for −m+ 1 �
i � −1, and F1 is a continuous compactly supported function on X+ × R. For such a
function, we have∫

X
−
z

F (T −n(y · z), Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

=
∫
X

−
z

F2((T
−n(y · z))+, Šng(y · z))1{τ̌ gt (y·z)>n−1}ν

−
z (dy),

where, for (z′, t ′) ∈ X+ × R,

F2(z
′, t ′) = exp(−Smψ(a−m . . . a−1 · z′))F1(z

′, t ′) =
∫
X

−
z′
F(y · z′, t ′)ν−

z′ (dy).

As F2(·, t ′) depends only on the future, we can apply Theorem 7.1, which gives

lim
n→∞ n3/2

∫
X

−
z

F2((T
−n(y · z))+, Šng(y · z))1{τ̌ gt (y·z)>n−1}ν

−
z (dy)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X×R

F2(x
′+, t ′)μ(−g)(dx′, dt ′).

To conclude, it remains to show that∫
X×R

F2(x+, t)μ(−g)(dx, dt) =
∫
X×R

F(x, t)μ(−g)(dx, dt).

Indeed, by the definition of the measure μ(−g) (see Theorem 1.1) and by using Lemma 2.2,
we get ∫

X×R

F(x, t)μ(−g)(dx, dt)

= lim
n→∞

∫
X×R

F(x, t)(−Sng(x))1{τ (−g)t (x)>n}ν(dx) dt

= lim
n→∞

∫
X+

∫
R

(−Sng(z))1{τ (−g)t (z)>n}

∫
X

−
z

F (y · z, t)ν−
z (dy) dtν

+(dz)

= lim
n→∞

∫
X+

∫
R

(−Sng(z))1{τ (−g)t (z)>n}F2(z, t) dtν+(dz)

=
∫
X×R

F2(x+, t)μ(−g)(dx, dt),

which ends the proof of the lemma.

Now we place a target on the starting point y ∈ X−
z .

LEMMA 7.6. Let g ∈ B+ be such that ν+(g) = 0. Assume that for any p 	= 0 and q ∈ R,
the function pg + q is not cohomologous to a function with values in Z. Then, for any
(z, t) ∈ X+ × R and any continuous compactly supported function F on X−

z × X × R, we
have
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lim
n→∞ n3/2

∫
X

−
z

F (y, T −ny · z, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X

−
z ×X×R

F(y′, x′, t ′)μ(−g)(dx′, dt ′)μ̌g,−
z,t (dy

′).

Proof. As usual, it suffices to prove the lemma when F is of the form (y, x, t ′) �→
1Ca,z (y)G(x, t ′), where a ∈ Amz and G is a continuous compactly supported function on
X × R.

If t + Skg(T
m−k(a · z)) � 0 for every 1 � k � m, we have that for n > m,

n3/2
∫
X

−
z

F (y, T −ny · z, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= n3/2 exp(−Smψ(a · z))
×

∫
X

−
a·z
G(T −(n−m)y · (a · z), t + Smg(a · z)+ Šn−mg(y · (a · z)))

× 1{τ̌ g
t+Smg(a·z)(y·(a·z))>n−m−1}ν

−
a·z(dy).

By Lemma 7.5, as n → ∞, the latter quantity converges to

2V̌ g(a · z, t + Smg(a · z))√
2πσ 3

g

∫
X×R

G(x′, t ′)μ(−g)(dx′, dt ′) exp(−Smψ(a · z)),

which, by the definition of measure μ̌g,−
z,t (see (3.21)), is equal to

2V̌ g(z, t)√
2πσ 3

g

μ̌
g,−
z,t (Ca,z)

∫
X×R

G(x′, t ′)μ(−g)(dx′, dt ′)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X

−
z ×X×R

F(y′, x′, t ′)μ(−g)(dx′, dt ′)μ̌g,−
z,t (dy

′).

If there exists 1 � k � m with t + Skg(T
m−k(a · z)) < 0, we have μ̌g,−

z,t (Ca,z) = 0 and∫
X

−
z

F (y, T −ny · z, t + Šng(y · z))1{τ̌ gt (y·z)>n}ν
−
z (dy) = 0

for n > k. The conclusion follows.

As usual, from Lemma 7.6, we want to deduce the analogous result for functions which
depend only on finitely many negative coordinates. We use the following easy formula that
relates the measures μg and μg◦T.

LEMMA 7.7. Let g ∈ B be such that ν(g) = 0 and g is not a coboundary. Then, for any
continuous compactly supported function F on X × R, we have∫

X×R

F(x, t)μg◦T (dx, dt) =
∫
X×R

F(T −1x, t)μg(dx, dt).
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Proof. By using the relation τg◦Tt = τ
g
t ◦ T , we get∫

X×R

F(x, t)μg◦T (dx, dt) = lim
n→∞

∫
X×R

F(x, t)Sn(g ◦ T )(x)1{τg◦Tt (x)>n}ν(dx) dt

= lim
n→∞

∫
X×R

F(T −1x, t)Sng(x)1{τgt (x)>n}ν(dx) dt

=
∫
X×R

F(T −1x, t)μg(dx, dt),

as desired.

LEMMA 7.8. Let g ∈ B be such that ν(g) = 0 and there existsm � 0 with g ◦ T m ∈ B+.
Assume that for any p 	= 0 and q ∈ R, the function pg + q is not cohomologous to a
function with values in Z. Then, for any (z, t) ∈ X+ × R and any continuous compactly
supported function F on X−

z × X × R, we have

lim
n→∞ n3/2

∫
X

−
z

F (y, T −ny · z, t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= 2V̌ g(z, t)√
2πσ 3

g

∫
X

−
z ×X×R

F(y′, x′, t ′)μ(−g)(dx′, dt ′)μ̌g,−
z,t (dy

′).

Proof. As in Lemma 3.15, for a ∈ Amz , set Fa to be the function on X−
a·z × X × R defined

by Fa(y, x, t) = F(y · a, T mx, t). Then we have, by setting h = g ◦ T m,

n3/2
∫
X

−
z

F (y, T −n(y · z), Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy)

= n3/2
∑
a∈Amz

exp(−Smψ(a · z))
∫
X

−
a·z
Fa(y, T −n(y · (a · z)), Šnh(y · (a · z)))

× 1{τ̌ ht (y·(a·z))>n−1}ν
−
a·z(dy).

By Lemma 7.6, as n → ∞, this converges to∑
a∈Amz

exp(−Smψ(a · z))2V̌ h(a · z, t)√
2πσ 3

g

×
∫
X

−
a·z×X×R

Fa(y
′, x′, t ′)μ(−h)(dx′, dt ′)μ̌h,−

a·z,t (dy′).

By (3.24), the latter quantity is equal to∫
X

−
z ×X×R

F(y′, T mx′, t ′)μ(−h)(dx′, dt ′)μ̌g,−
z,t (dy

′).

As h = g ◦ T m, the conclusion now follows from Lemma 7.7.

Now we can give a result for any function g in B.

LEMMA 7.9. Let g ∈ B be such that ν(g) = 0. Assume that for any p 	= 0 and q ∈ R,
the function pg + q is not cohomologous to a function with values in Z. Then, for any
continuous compactly supported function F on X × X × R × R, we have
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lim
n→∞ n3/2

∫
X×R

F(x, T −nx, t , t + Šng(x))1{τ̌ gt (x)>n−1}ν(dx) dt

= 2√
2πσ 3

g

∫
X×X×R×R

F(x, x′, t , t ′)μ(−g)(dx′, dt ′)μ̌g(dx, dt).

Proof. We can assume that the function F is non-negative. For (z, t) ∈ X+ × R, denote

Wn(z, t) = n3/2
∫
X

−
z

F (y · z, T −n(y · z), t , t + Šng(y · z))1{τ̌ gt (y·z)>n−1}ν
−
z (dy).

Let (gm)m�0 be the sequence of Hölder continuous functions as in Lemma 2.11. For any
n, m � 0, we set

F+
m (x, x′, t , t ′) = sup

|s′|�2c1αm
F (x, x′, t − 2c1α

m, t ′ + s′),

F−
m (x, x′, t , t ′) = inf

|s′|�2c1αm
F (x, x′, t + 2c1α

m, t ′ + s′),

and

W+
n,m(z, t) = n3/2

∫
X

−
z

F+
m (y · z, T −n(y · z), t , t + Šngm(y · z))

× 1{τ̌ gmt (y·z)>n−1}ν
−
z (dy),

W−
n,m(z, t) = n3/2

∫
X

−
z

F−
m (y · z, T −n(y · z), t , t + Šngm(y · z))

× 1{τ̌ gmt (y·z)>n−1}ν
−
z (dy).

For z ∈ X+ and t ∈ R, it holds that

W−
n,m(z, t − 2c1α

m) � Wn(z, t) � W+
n,m(z, t + 2c1α

m).

By taking the limit as n → ∞, we get by Lemma 7.8,

2V̌ gm(z, t − 2c1α
m)√

2πσ 3
g

∫
X

−
z ×X×R

F−
m (y · z, x′, t − 2c1α

m, t ′)

× μ(−gm)(dx′, dt ′)μ̌gm,−
z,t−2c1αm

(dy)

� lim inf
n→∞ Wn(z, t) � lim sup

n→∞
Wn(z, t)

� 2V̌ gm(z, t + 2c1α
m)√

2πσ 3
g

∫
X

−
z ×X×R

F+
m (y · z, x′, t + 2c1α

m, t ′)

× μ(−gm)(dx′, dt ′)μ̌gm,−
z,t+2c1αm

(dy). (7.7)

On the one hand, after integrating over X+ × R in (7.7) with respect to the product of ν+
with the Lebesgue measure, by Fatou’s lemma and Lemma 7.8, we get
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2√
2πσ 3

g

∫
X×X×R×R

F−
m (x, x′, t , t ′)μ(−gm)(dx′, dt ′)μ̌gm(dx, dt)

� lim inf
n→∞ n3/2

∫
X×R

F(x, T −nx, t , t + Šng(x))1{τ̌ gt (x)>n−1}ν(dx) dt . (7.8)

To conclude, we need to show the reverse Fatou property holds. To this aim, we choose
a non-negative continuous compactly supported function G on R such that for any
(x, x′, t , t ′) ∈ X × X × R × R, one has F+

0 (x, x′, t , t ′) � G(t)G(t ′). Then, we get for
(z, t) ∈ X+ × R,

W+
n,0(z, t) � Un(z, t) := n3/2G(t)

∫
X

−
z

G(t + Šng0(y · z))1{τ̌ g0
t (y·z)>n−1}ν

−
z (dy).

By Lemma 7.1, Un(z, t) converges uniformly in (z, t) ∈ X+ × R. Therefore, by applying
Fatou’s lemma to the sequence Un(z, t)−Wn(z, t), we get by integrating over X+ × R in
(7.7) with respect to the product of ν+ with the Lebesgue measure,

2√
2πσ 3

g

∫
X×X×R×R

F+
m (x, x′, t , t ′)μ(−gm)(dx′, dt ′)μ̌gm(dx, dt)

� lim sup
n→∞

n3/2
∫
X×R

F(x, T −nx, t , t + Šng(x))1{τ̌ gt (x)>n−1}ν(dx) dt . (7.9)

By letting m → ∞, the conclusion follows from (7.8), (7.9) and Lemma 3.19.

Proof of Theorem 1.7. By the duality lemma (Lemma 2.12), we have∫
X×R

F(x, T nx, t , t + Snf (x))1{τft (x)>n−1}ν(dx) dt

=
∫
X×R

F(T −nx, x, t − Šnf (x), t)1{τ̌ (−f )t (x)>n−1}ν(dx) dt .

Now the conclusion follows from Lemma 7.9.
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