Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.27 Render date: 2022-08-11T13:15:50.295Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Two-dimensional ‘discrete hydrodynamics’ and Monge–Ampère equations

Published online by Cambridge University Press:  30 September 2002

JÜRGEN MOSER
Affiliation:
Forschungsinstitut für Mathematik, ETH, Zurich, Switzerland
ALEXANDER P. VESELOV
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK and Landau Institute for Theoretical Physics, Moscow, Russia (e-mail: A.P.Veselov@lboro.ac.uk)

Abstract

An integrable discrete-time Lagrangian system on the group of area-preserving plane diffeomorphisms \mathit{SDiff}(\mathbb{R}^{2}) is considered. It is shown that non-trivial dynamics exists only for special initial data and the corresponding mapping can be interpreted as a Bäcklund transformation for the (simple) Monge–Ampère equation. In the continuous limit, this gives the isobaric (constant pressure) solutions of the Euler equations for an ideal fluid in two dimensions. In the Appendix written by E. V. Ferapontov and A. P. Veselov, it is shown how the discrete system can be linearized using the transformation of the simple Monge–Ampère equation going back to Goursat.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-dimensional ‘discrete hydrodynamics’ and Monge–Ampère equations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Two-dimensional ‘discrete hydrodynamics’ and Monge–Ampère equations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Two-dimensional ‘discrete hydrodynamics’ and Monge–Ampère equations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *