Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-6mxsq Total loading time: 0.219 Render date: 2022-01-29T08:32:35.496Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A symbolic characterization of the horseshoe locus in the Hénon family

Published online by Cambridge University Press:  08 March 2016

ERIC BEDFORD
Affiliation:
Mathematics Department, Stony Brook University, Stony Brook, NY 11794-3651, USA email ebedford@math.stonybrook.edu
JOHN SMILLIE
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK email j.smillie@warwick.ac.uk

Abstract

We consider the family of quadratic Hénon diffeomorphisms of the plane $\mathbb{R}^{2}$ . A map will be said to be a ‘horseshoe’ if its restriction to the non-wandering set is hyperbolic and conjugate to the full 2-shift. We give a criterion for being a horseshoe based on an auxiliary coding which describes positions of points relative to the stable manifold of one of the fixed points. In addition we describe the topological conjugacy type of maps on the boundary of the horseshoe locus. We use complex techniques and we work with maps in a parameter region which is a two-dimensional analog of the familiar ‘ $1/2$ -wake’ for the quadratic family $p_{c}(z)=z^{2}$ .

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, Z. and Ishii, Y.. On parameter loci of the Hénon family. Preprint, 2015, arXiv:1501.01368.Google Scholar
Bedford, E., Lyubich, M. and Smillie, J.. Polynomial diffeomorphisms of C 2 . IV: the measure of maximal entropy and laminar currents. Invent. Math. 112 (1993), 77125.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of C 2 . VII: hyperbolicity and external rays. Ann. Sci. Éc. Norm. Supér. (4) 32(4) (1999), 455497.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of C 2 . VIII: quasi-expansion. Amer. J. Math. 124 (2002), 221271.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. The Hénon family: the complex horsehoe locus and real parameter space. Complex Dynamics (Contemporary Mathematics, 396) . American Mathematical Society, Providence, RI, 2006, pp. 2136.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Real polynomial diffeomorphisms with maximal entropy: tangencies. Ann. of Math. (2) 160 (2004), 125.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Real polynomial diffeomorphisms with maximal entropy. II. Small Jacobian. Ergod. Th. & Dynam. Syst. 26(5) (2006), 12591283.CrossRefGoogle Scholar
Cvitanović, P.. Periodic orbits as the skeleton of classical and quantum chaos. Nonlinear Science: The Next Decade (Los Alamos, NM, 1990). Phys. D 51(1) (1991), 138151.Google Scholar
Cao, Y., Luzzatto, S. and Rios, I.. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discrete Contin. Dyn. Syst. 15 (2006), 6171.Google Scholar
Cao, Y., Luzzatto, S. and Rios, I.. The boundary of hyperbolicity for Hénon-like families. Ergod. Th. & Dynam. Syst. 28(4) (2008), 10491080.CrossRefGoogle Scholar
Carleson, L., Jones, P. and Yoccoz, J.-C.. Julia and John. Bol. Soc. Brasil. Mat. (N.S.) 25(1) (1994), 130.CrossRefGoogle Scholar
De Carvalho, A. and Hall, T.. How to prune a horseshoe. Nonlinearity 15 (2002), R19R68.CrossRefGoogle Scholar
Dinh, T.-C., Dujardin, R. and Sibony, N.. On the dynamics near infinity of some polynomial mappings in C 2 . Math. Ann. 333(4) (2005), 703739.CrossRefGoogle Scholar
Dujardin, R.. Hénon-like mappings in C 2 . Amer. J. Math. 126(2) (2004), 439472.CrossRefGoogle Scholar
Hubbard, J. H. and Oberste-Vorth, R.. Hénon mappings in the complex domain. II: projective and inductive limits of polynomials. Real and Complex Dynamical Systems (Hillerød, 1993) (Nato Science Series C, 464) . Kluwer Academic Publishers, Dordrecht, 1995, pp. 89132.CrossRefGoogle Scholar
Hagiwara, R. and Shudo, A.. An algorithm to prune the area-preserving Hénon map. J. Phys. A 37(44) (2004), 1052110543.CrossRefGoogle Scholar
Hoensch, U.. Horseshoe-type diffeomorphisms with a homoclinic tangency at the boundary of hyperbolicity. PhD Thesis, Michigan State University, 2003, 57pp.Google Scholar
Hoensch, U.. Some hyperbolicity results for Hénon-like diffeomorphisms. Nonlinearity 21(3) (2008), 587611.CrossRefGoogle Scholar
Ishii, Y.. Hyperbolic polynomial diffeomorphisms of C 2 . I: a non-planar map. Adv. Math. 218(2) (2008), 417464.CrossRefGoogle Scholar
Ishii, Y. and Smillie, J.. Homotopy shadowing. Amer. J. Math. 132(4) (2010), 9871029.CrossRefGoogle Scholar
Lipa, C.. Monodromy and Hénon mappings. PhD Thesis, Cornell University, 2009.Google Scholar
Milnor, J.. Periodic orbits, external rays and the Mandelbrot set: an expository account. Géométrie Complexe et systèmes Dynamiques (Orsay, 1995). Astérisque 261 (2000), xiii, 277–333.Google Scholar
Takahasi, H.. Prevalence of non-uniform hyperbolicity at the first bifurcation of Hénon-like families. Preprint, 2013, arXiv:1308.4199 [math.DS].Google Scholar
Willard, S.. General Topology. Addison-Wesley, Reading, MA, 1970.Google Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A symbolic characterization of the horseshoe locus in the Hénon family
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A symbolic characterization of the horseshoe locus in the Hénon family
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A symbolic characterization of the horseshoe locus in the Hénon family
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *