Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-5rlvm Total loading time: 0.163 Render date: 2021-10-23T21:16:31.681Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On actions of epimorphic subgroups on homogeneous spaces

Published online by Cambridge University Press:  01 April 2000

NIMISH A. SHAH
Affiliation:
Yale University, New Haven, CT 06520-8283, USA
BARAK WEISS
Affiliation:
Hebrew University, Jerusalem 91904, Israel Current address: Institute of Mathematical Sciences, SUNY Stony Brook, Stony Brook NY 11794, USA (e-mail: barak@math.sunysb.edu)

Abstract

For an inclusion $F < G < L$ of connected real algebraic groups such that $F$ is epimorphic in $G$, we show that any closed $F$-invariant subset of $L/\Lambda$ is $G$-invariant, where $\Lambda$ is a lattice in $L$. This is a topological analogue of a result due to S. Mozes, that any finite $F$-invariant measure on $L/\Lambda$ is $G$-invariant.

This result is established by proving the following result. If in addition $G$ is generated by unipotent elements, then there exists $a\in F$ such that the following holds. Let $U\subset F$ be the subgroup generated by all unipotent elements of $F$, $x\in L/\Lambda$, and $\lambda$ and $\mu$ denote the Haar probability measures on the homogeneous spaces $\overline{Ux}$ and $\overline{Gx}$, respectively (cf. Ratner's theorem). Then $a^n\lambda\to\mu$ weakly as $n\to\infty$.

We also give an algebraic characterization of algebraic subgroups $F<{\rm SL}_n(\mathbb{R})$ for which all orbit closures on ${\rm SL}_n(\mathbb{R})/{\rm SL}_n(\Z)$ are finite-volume almost homogeneous, namely the smallest observable subgroup of ${\rm SL}_n(\mathbb{R})$ containing $F$ should have no non-trivial algebraic characters defined over $\mathbb{R}$.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On actions of epimorphic subgroups on homogeneous spaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On actions of epimorphic subgroups on homogeneous spaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On actions of epimorphic subgroups on homogeneous spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *