Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T16:00:06.907Z Has data issue: false hasContentIssue false

Almost totally disconnected minimal systems

Published online by Cambridge University Press:  01 June 2009

FRANCISCO BALIBREA
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, Aptdo. de Correos 4021, E–30100 Murcia, Spain (email: balibrea@um.es)
TOMASZ DOWNAROWICZ
Affiliation:
Institute of Mathematics, Technical University, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland (email: downar@im.pwr.wroc.pl)
ROMAN HRIC
Affiliation:
Laboratoire Analyse, Géométrie et Applications, Institut Galilée, Université Paris 13, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France Institute of Mathematics and Computer Science, Science and Research Institute, Matej Bel University, Dumbierska 1, SK-974 11 Banská Bystrica, Slovakia (email: hric@math.univ-paris13.fr, hric@savbb.sk)
L’UBOMÍR SNOHA
Affiliation:
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK–974 01 Banská Bystrica, Slovakia (email: snoha@fpv.umb.sk, spitalsk@fpv.umb.sk)
VLADIMÍR ŠPITALSKÝ
Affiliation:
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK–974 01 Banská Bystrica, Slovakia (email: snoha@fpv.umb.sk, spitalsk@fpv.umb.sk)

Abstract

A space X is said to be almost totally disconnected if the set of its degenerate components is dense in X. We prove that an almost totally disconnected compact metric space admits a minimal map if and only if either it is a finite set or it has no isolated point. As a consequence we obtain a characterization of minimal sets on dendrites and local dendrites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Agronsky, S. J. and Ceder, J. G.. What sets can be ω-limit sets in E n? Real Anal. Exchange 17 (1991/1992), 97–109.CrossRefGoogle Scholar
[2]Agronsky, S. J. and Ceder, J. G.. Each Peano subspace of E k is an ω-limit set. Real Anal. Exchange 17 (1991/1992), 371–378.Google Scholar
[3]Arai, T. and Chinen, N.. The construction of chaotic maps in the sense of Devaney on dendrites which commute to continuous maps on the unit interval. Discrete Contin. Dyn. Syst. 11(2–3) (2004), 547556.Google Scholar
[4]Akin, E. and Glasner, E.. Residual properties and almost equicontinuity. J. Anal. Math. 84 (2001), 243286.Google Scholar
[5]Armentrout, S. and Singh, S.. Shape properties of compacta in generalized n-manifolds. Continua, Decompositions, Manifolds (Austin, TX, 1980). University of Texas Press, Austin, TX, 1983, pp. 202220.Google Scholar
[6]Banks, J.. Regular periodic decompositions for topologically transitive maps. Ergod. Th. & Dynam. Sys. 17(3) (1997), 505529.Google Scholar
[7]Block, L. S. and Coppel, W. A.. One-dimensional Dynamics (Lecture Notes in Mathematics, 1513). Springer, Berlin, 1992.Google Scholar
[8]Blokh, A., Cleveland, Ch. and Misiurewicz, M.. Julia sets of expanding polymodials. Ergod. Th. & Dynam. Sys. 25(6) (2005), 16911718.Google Scholar
[9]Balibrea, F. and García Guirao, J. L.. Continua with empty interior as ω-limit sets. Appl. Gen. Topol. 6(2) (2005), 195205.Google Scholar
[10]Balibrea, F., Hric, R. and Snoha, L’.. Minimal sets on graphs and dendrites. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13(7) (2003), 17211725.CrossRefGoogle Scholar
[11]Bing, R. H.. Complementary domains of continuous curves. Fund. Math. 36 (1949), 303318.CrossRefGoogle Scholar
[12]Bruin, H., Kolyada, S. and Snoha, L’.. Minimal nonhomogeneous continua. Colloq. Math. 95 (2003), 123132.Google Scholar
[13]Blokh, A., Oversteegen, L. and Tymchatyn, E. D.. On minimal maps of 2-manifolds. Ergod. Th. & Dynam. Sys. 25(1) (2005), 4157.Google Scholar
[14]Blokh, A., Oversteegen, L. and Tymchatyn, E.. On almost one-to-one maps. Trans. Amer. Math. Soc. 358(11) (2006), 50035014.Google Scholar
[15]Charatonik, J. J. and Charatonik, W. J.. The Effros metric. Topology Appl. 110 (2001), 237255.CrossRefGoogle Scholar
[16]Downarowicz, T.. Survey of odometers and Toeplitz flows. Algebraic and Topological Dynamics (Contemporary Mathematics, 385). American Mathematical Society, Providence, RI, 2005,pp. 737.Google Scholar
[17]Ellis, R.. The construction of minimal discrete flows. Amer. J. Math. 87 (1965), 564574.CrossRefGoogle Scholar
[18]Engelking, R.. General Topology (Sigma Series in Pure Mathematics, 6). Helderman, Berlin, 1989.Google Scholar
[19]Gottschalk, W. H.. Orbit-closure decompositions and almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 915919.CrossRefGoogle Scholar
[20]Haddad, K. N. and Johnson, A. S. A.. Auslander systems. Proc. Amer. Math. Soc. 125 (1997), 21612170.CrossRefGoogle Scholar
[21]Hocking, J. G. and Young, G. S.. Topology. Dover Publications, Inc., New York, 1988.Google Scholar
[22]Kolyada, S., Snoha, L’. and Trofimchuk, S.. Noninvertible minimal maps. Fund. Math. 168 (2001), 141163.CrossRefGoogle Scholar
[23]Kolyada, S., Snoha, L’. and Trofimchuk, S.. Minimal sets of fibre-preserving maps in graph bundles. Preprint.Google Scholar
[24]Kuratowski, K.. Topology, Vol. 2. Academic Press, New York and PWN, Warsaw, 1968.Google Scholar
[25]Levin, G. and van Strien, S.. Local connectivity of the Julia set of real polynomials. Ann. of Math. (2) 147 (1998), 471541.Google Scholar
[26]Mai, J. H.. Pointwise-recurrent graph maps. Ergod. Th. & Dynam. Sys. 25(2) (2005), 629637.CrossRefGoogle Scholar
[27]Milnor, J.. Local connectivity of Julia sets: expository lectures. The Mandelbrot Set, Theme and Variations (London Mathematical Society Lecture Note Series, 274). Cambridge University Press, Cambridge, 2000, pp. 6116.Google Scholar
[28]Morosawa, S.. Local connectedness of Julia sets for transcendental entire functions. Nonlinear Analysis and Convex Analysis (Niigata, 1998). World Science Publishing, River Edge, NJ, 1999, pp. 266273.Google Scholar
[29]Nadler, S. B.. Continuum theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, Inc., New York, 1992.Google Scholar
[30]Parry, W.. A note on cocycles in ergodic theory. Compositio Math. 28 (1974), 343350.Google Scholar
[31]Špitalský, V.. Omega-limit sets in hereditarily locally connected continua. Topology Appl. 155(11) (2008), 12371255.Google Scholar
[32]Snoha, L’. and Špitalský, V.. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete Contin. Dyn. Syst. 14(4) (2006), 821835.CrossRefGoogle Scholar
[33]de Vries, J.. Elements of Topological Dynamics (Mathematics and its Applications, 257). Kluwer Academic Publishers Group, Dordrecht, 1993.Google Scholar
[34]Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.CrossRefGoogle Scholar
[35]Ward, L. E.. Fixed point sets. Pacific J. Math. 47(2) (1973), 553565.Google Scholar
[36]Zippin, L.. On continuous curves irreducible about subsets. Fund. Math. 20 (1933), 197205.Google Scholar