Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T09:32:12.769Z Has data issue: false hasContentIssue false

Poultry meat as a source of human salmonellosis in England and Wales

Published online by Cambridge University Press:  19 October 2009

T. J. Humphrey
Affiliation:
Public Health Laboratory, Church Lane, Heavitree, Exeter EX2 5AD
G. C. Mead
Affiliation:
AFRC Institute of Food Research, Bristol Laboratory, Longford, Bristol BS18 7DY
B. Rowe
Affiliation:
Division of Enteric Pathogeny, Central Public Health Laboratory, 61, Colindale Avenue, London NW9 5HT
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In England and Wales human salmonellosis is a major public health problem and, although mortality is low, the disease has important social and economic consequences. All surveillance indicators suggest that an epidemic of unprecedented proportions is occurring. Between 1081 and 1980 the number of strains received for serotyping by the Public Health Laboratory Service (PHLS) Division of Enteric Pathogens has increased by 60% (Table 1). This is predominantly due to strains of Salmonella typhimurium and S. enteritidis. Smaller but significant increases have occurred in the numbers of S. virchow and S. Stanley. With the exception of the latter serotype, which seems to come from a bovine reservoir, the indications aro that poultry is the main source of the increase in infections.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1988

References

REFERENCES

Bailey, J. S., Thomson, J. E., Cox, N. A. & Shackelford, A. D. (1986). Chlorine spray washing to reduce bacterial contamination of poultry processing equipment. Poultry Science 65, 11201123.CrossRefGoogle Scholar
Brownell, J. R., Sadler, W. W. & Fanelli, M. J. (1970). Role of caeca in intestinal infection of chickens with Salmonella lyphimurium. Avian Diseases 14, 106116.CrossRefGoogle Scholar
Bryan, F. L., Ayres, J. C. & Draft, A. A. (1968). Contributory causes of salmonellas on turkey products. American Journal of Epidemiology 87, 578597.CrossRefGoogle ScholarPubMed
Cox, N. A., Davis, B. H., Watts, A. B. & Colmer, A. R. (1973). Salmonella in the laying hen. 1. Salmonella recovery from viscera, faeces and eggs following oral inoculation. Poultry Science 52, 661666.CrossRefGoogle ScholarPubMed
Crabb, W. E. & Walker, M. (1971). The control of salmonella in broiler chickens. In Hygiene and Food Production (ed. Fox, A.), pp. 119131. Edinburgh, London: Churchill Livingstone.Google Scholar
Dempster, J. F. (1985). Radiation preservation of meat and meat products: A review. Meal Science 12, 6189.CrossRefGoogle ScholarPubMed
Fanelli, M. J., Sadler, W. W., Franti, C. E. & Brownell, J. R. (1971). Localisation of salmoncllao within the intestinal tract of chickens. Avian Diseases 15, 366375.CrossRefGoogle ScholarPubMed
Humphrey, T. J., Lannino, D. G. & Beresford, J. R., (1981). The effect of pH adjustment on the microbiology of chicken scald tank water with particular reference to the death rate of salmoncllas. Journal of Applied Bacteriology 51, 517527.CrossRefGoogle Scholar
Humphrey, T. J. & Lannino, D. G. (1987). Salmonella and campylobacter contamination of broiler chicken carcasses and scald tank water: the influence of water pH. Journal of Applied Bacteriology 63, 2125.CrossRefGoogle ScholarPubMed
Humphrey, T. J. & Lanning, D. G. (1988). The vertical transmission of salmoncllas and formic acid treatment of chicken feed: a possible strategy for control. Epidemiology and Infection. (In the press.)CrossRefGoogle Scholar
Juven, B. J., Cox, N. A., Mercuri, A. J. & Thompson, I. E. (1974). A hot acid treatment for eliminating salmonella from chicken meat. Journal of Milk and Food Tedmology 37, 237239.CrossRefGoogle Scholar
Klose, A. A., Kaufman, V. F. & Pool, M. F. (1971). Scalding poultry by steam at subatmosphcric pressures. Poultry Science 50, 302304.CrossRefGoogle Scholar
Lillard, H. S. (1973). Contamination of blood system and edible parts of poultry with Clostridium perfringens during water scalding. Journal of Food Science 38, 151154.CrossRefGoogle Scholar
Lillard, H. S., Blankenship, L. C., Dickens, J. A., Craven, S. E. & Shackelford, A. D. (1987). Effect of acetic acid on the microbiological quality of scalded picked ami unpicked broiler carcasses. Journal of Food Protection 50, 112114.CrossRefGoogle Scholar
Matthews, D. (1986). Protein processing – past, present and future. State Veterinary Journal 41, 7584.Google Scholar
McBride, G. B., Skura, B. J., Yada, R. Y. & Bowmer, E. J. (1980). Relationship between incidence of salmonella contamination among prc-scaldcd, eviscerated and post-chilled chickens in a poultry processing plant. Journal of Food Protection 43, 538542.CrossRefGoogle Scholar
McMeerin, T. A. & Thomas, C. J. (1979). Aspects of the microbial ecology of poultry processing and storage: a review. Food Technology in Australia 31, 35–13.Google Scholar
Mead, G. C. & Thomas, N. L. (1973). Factors affecting the use of chlorine in the Hpin-chilling of eviscerated poultry. llritish Poultry Science 14, 99117.CrossRefGoogle Scholar
Mead, G. C. (1975). Hygiene aspects of the chilling processes. In Second European Symposium on Poultry Meal (ed. Erdtsieck, B. and Oostcrbeek, ). The Netherlands, paper no. 35 (18).Google Scholar
Morris, G. K. & Wells, J. G. (1970). Salmonella contamination in a poultry processing plant. Applied Microbiology 19, 705797.CrossRefGoogle Scholar
Morrison, G. J. & Fleet, G. H. (1985). Reduction of salmonella on chicken carcasses by immersion treatments. Journal of Food Protection 48, 939943.CrossRefGoogle ScholarPubMed
Mulder, R. W. A. W., Dorresteijn, L. W. J., Hofmans, G. J. P. & Veerkamp, C. H. (1970). Experiments with continuous immersion chilling of broiler carcasses according to the code of practice. Journal of Food Science 41, 438442.CrossRefGoogle Scholar
Mulder, R. W. A. W., Dorresteijn, L. W. J. & Van Der Broek, J. (1978). Crosscontamination during the scalding and plucking of broilers. British Poultry Science 19, 6170.CrossRefGoogle Scholar
Notermans, S. & Kampelmacher, E. H. (1975). Heat destruction of some bacterial strains attached to broiler skin. British Poultry Science 16, 351361.CrossRefGoogle ScholarPubMed
Notermans, S., Van Leusden, F. M., Van Schothorst, M. & Kampelmacher, E. H. (1975). Contamination of broiler chickens by salmonella during processing in a number of poultryprocessing plants. Tijdschrift Voor Diergeneeskonde 100, 259264.Google Scholar
Notermans, S., Terbijhe, R. J. & Van Schothorst, M. (1980). Removal of faecal contamination of broilers by spray-cleaning during evisceration. British Poultry Science 21, 115121.CrossRefGoogle ScholarPubMed
Okrend, A. J., Johnston, R. W. & Moran, A. B. (1986). Effect of acetic acid on the death rates at 52 °C of Salmonella newporl, Salmonella typhimurium and Campylobacler jejuni in poultry scald water. Journal of Food Protection 49, 500503.CrossRefGoogle ScholarPubMed
Patrick, T. E., Collins, J. A. & Goodwin, T. L. (1973). Isolation of salmonella from carcasses of steam- and water-scalded poultry. Journal of Milk and Food Technology 36, 3436.CrossRefGoogle Scholar
Samuelson, K. J., Rupnow, T. H. & Froning, G. W. (1985). The effect of lysozyme and ethylene diaminetetra-acetic acid on salmonella on broiler parts. Poultry Science 64, 14881490.CrossRefGoogle Scholar
Sanders, D. H. & Blackshear, C. D. (1971). Effect of chlorination in the final washer on bacterial counts of broiler chicken carcasses. Poultry Science 50, 215219.CrossRefGoogle ScholarPubMed
Seuna, E. & Nurmi, E. (1979). Therapeutical trials with antimicrobial agents and cultured caeeal microflora in Salmonella infantis infections in chickens. Poultry Science 58, 11711174.CrossRefGoogle ScholarPubMed
Seuna, E., Schneitz, C., Nurmi, E. & Makkla, P. H. (1980). Combined therapy of salmonella infection in chickens by antimicrobial agents followed by cultured caccal bacteria. Poultry Science 59, 11871192.CrossRefGoogle Scholar
Smith, H. W. (1971). The epizootiology of salmonella infection in poultry. In Poultry Disease ami World Economy, (ed. Gordon, R. F. and Freeman, B. M.) pp. 3746. Edinburgh, British Poultry Science.Google Scholar
Smith, H. W. & Tucker, J. F. (1975). The effect of feeding diets containing permitted antibiotics on the faecal excretion of Salmonella typhimurium by experimentally infected chickens. Journal of Hygiene 75, 293301.CrossRefGoogle ScholarPubMed
Smith, H. W. (1978). Oral administration of neomycin to chickens experimentally infected with Salmonella lyphimurium. Veterinary Record 102, 354356.CrossRefGoogle Scholar
Smith, H. W. & Tucker, J. F. (1978). The effect of feed additives on the colonization of the alimentary tract of chickens by Salmonella typhimurium. Journal of Hygiene 80, 217231.CrossRefGoogle ScholarPubMed
Smith, H. W. & Tucker, J. F. (1980). Further observations on the effect of feeding diets containing avoparcin, bacitracin and sodium arscnilate on the colonization of the alimentary tract of poultry by salmonella organisms. Journal of Hygiene 84, 137150.CrossRefGoogle ScholarPubMed
Thomson, J. E., Bailey, J. S. & Cox, N. A. (1979). Phosphato treatments to control salmonella and reduce spoilage and rancidity on broiler carcasses. Poultry Science 58, 139143.CrossRefGoogle Scholar
Thomson, J. E., Cox, N. A., Bailey, J. S. & Islam, M. N. (1981). Minimizing salmonella contamination on broiler carcasses with poly (hexamethylene biguanide hydrochloride). Journal of Food Protection 44, 440—441.CrossRefGoogle Scholar
Veerkamp, C. H. & Hofmans, G. J. P. (1973). Simultaneous scalding and plucking. Poultry International 12, 1618.Google Scholar
Williams, J. E. (1981a). Salmonellas in poultry feeds–a worldwide review. Part I. World's Poultry Science Journal 37, 619.CrossRefGoogle Scholar
Williams, J. E. (1981b). Salmonellas in poultry feed–a worldwide review. Part III. World's Poultry Science Journal 37, 97105.CrossRefGoogle Scholar