Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T01:28:09.092Z Has data issue: false hasContentIssue false

Infra-red spectroscopy and its application to microbiology

Published online by Cambridge University Press:  15 May 2009

K. P. Norris
Affiliation:
Microbiological Research Establishment, Ministry of Supply, Porton, Wilts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Colorimeters and non-recording spectrophotometers for visible and ultra-violet light have been used for many years and are to be found in most microbiological laboratories. With the need for greater speed of operation, recording instruments are now coming into more general use. During the last two decades recording infra-red spectrophotometers have been developed and these have enabled the absorption measurements on micro-organisms to be extended into the infra-red region of the spectrum. Two factors have tended to retard the use of infra-red spectrophotometry. One is the high initial cost of the equipment and the other is the large absorption of infra-red radiation by water. Despite these difficulties, a considerable amount of work has now been done and it seems profitable to review the varied applications to which infra-red spectroscopy has already been put and to indicate the results which have been obtained by its use.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

References

REFERENCES

Adams, D. M. (1957). Electrophoretic and infra-red studies on some bacteria. Ph.D. Thesis, University of London.Google Scholar
Ambrose, E. J. (1950). Synthetic polypeptides II. The structures of synthetic and natural polyglutamic acids compared by means of infrared spectroscopy. J. chem. Soc. p. 3246.Google Scholar
Astbury, W. T. & Saha, N. N. (1953). Structure of algal flagella. Nature, Lond., 171, 280.CrossRefGoogle ScholarPubMed
Bailey, J. H., Martini, C. M. & Nachod, F. C. (1953). Effect of certain antibacterial agents on the infrared spectrum of Micrococcus pyogenes var. aureus. J. Bact. 65, 750.CrossRefGoogle ScholarPubMed
Barer, R., Cole, A. R. H. & Thompson, H. W. (1949). Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology. Nature, Lond., 163, 198.CrossRefGoogle ScholarPubMed
Bellamy, L. J. (1954). The infra-red spectra of complex molecules. London: Methuen and Co., Ltd.Google Scholar
Benedict, A. A. (1953). Further studies on infrared absorption spectra of viruses. School of Aviation Medicine, Randolf Field. Report no. 9.Google Scholar
Benedict, A. A. (1955). Group classification of virus preparations by infra-red spectroscopy. J. Bact. 69, 264.CrossRefGoogle Scholar
Benedict, A. A. (1957). The study of virus preparations by infrared spectroscopy. Ann. N.Y. Acad. Sci. 69, 158.CrossRefGoogle Scholar
Benedict, A. A. & O'brien, E. (1956). Antigenic studies on the psittacosis-lymphogranuloma venereum group of viruses. II. Characterisation of complement-fixing antigens extracted with lauryl sulphate. J. Immunol. 76, 293.CrossRefGoogle Scholar
Benedict, A. A. & Pollard, M. (1953). Infrared absorption studies of virus preparations. School of Aviation Medicine. Randolf Field. Report no. 12.Google Scholar
Benedict, A. A., Pollard, M. & Engley, F. B. (1954). Infrared absorption studies of virus preparations. Tex. Rep. Biol. Med. 12, 21.Google Scholar
Bentley, H. R., Cunningham, K. G. & Spring, F. S. (1951). Cordycepin, a metabolic product from cultures of Cordyceps militaris. The structure of Cordycepin. J. chem. Soc. p. 2301.CrossRefGoogle Scholar
Bergmann, D. E., Halleck, F. E., Mechalas, B. J. & Tenney, R. I. (1957). Characteristics of a factor protecting the viability of lyophilized Brucella abortus cells. J. Bact. 74, 101.CrossRefGoogle ScholarPubMed
Blackwood, A. C. & Epp, A. (1957). Identification of β-hydroxybutyric acid in bacterial cells by infra-red spectrophotometry. J. Bact. 74, 266.CrossRefGoogle Scholar
Blout, E. R. (1957). Aqueous solution infrared spectroscopy of biochemical polymers. Ann. N.Y. Acad. Sci. 69, 84.CrossRefGoogle ScholarPubMed
Blout, E. R. & Lenormant, H. (1953). Infrared spectroscopy of biological materials in aqueous solutions. J. opt. Soc. Amer. 43, 1093.CrossRefGoogle ScholarPubMed
Blout, E. R. & Mellors, R. C. (1949). Infrared spectra of tissues. Science, 110, 137.CrossRefGoogle ScholarPubMed
Bolduan, O. E. A., Muth, C. F. & Orlando, M. D. (1952). Differentiation of microorganisms by their infrared spectra. Bact. Proc. 32.Google Scholar
Cawley, E. P., Wheeler, C. E., Boatwright, H., Smith, D. W., Randall, H. M. & Lingamfelter, C. S. (1954). Infrared spectroscopic studies of fungi. J. invest. Derm. 22, 273.CrossRefGoogle ScholarPubMed
Clemo, G. R. & Daglish, A. F. (1950). The constitution of the pigment of Chromobacterium iodinum. J. chem. Soc. p. 1481.CrossRefGoogle Scholar
Colthup, N. B. (1950). Spectra-structure correlations in the infra-red region. J. opt. Soc. Amer. 40, 397.CrossRefGoogle Scholar
Dalgleish, C. E. & Todd, A. R. (1949). Actinomycin. Nature, Lond., 164, 830.CrossRefGoogle Scholar
Davies, D. A. L., Crumpton, M. J., Macpherson, I. A. & Hutchison, A. M. (1958). The adsorption of bacterial polysaccharides by erythrocytes. Immunology, 2, 157.Google Scholar
Downey, P. F. & Black, S. (1957). A new naturally occurring isomer of β-methyllanthionine. J. biol. Chem. 228, 171.CrossRefGoogle ScholarPubMed
Ehrlich, G. & Sutherland, G. B. B. M. (1954). Infrared studies on solutions of polymeric electrolytes. II. Proteins. J. Amer. chem. Soc. 76, 5268.CrossRefGoogle Scholar
Ellinghausen, H. C. (1958). Infrared analysis helps unlock structural secrets of cells in microbiological studies. Perkin-Elmer Instrument News, 9, no. 3, 1.Google Scholar
Ford, J. E. & Goulden, J. D. S. (1959). The influence of vitamin B12 on growth rate and cell composition of the flagellate Ochromonas malhamensis. J. gen. Microbiol. 20, 267.CrossRefGoogle ScholarPubMed
Ford, M. A. & Wilkinson, G. R. (1954). The preparation and properties of pressed alkali halide disks with special reference to their use in spectroscopy. J. sci. Instrum. 31, 338.CrossRefGoogle Scholar
Forsyth, W. G. C., Hayward, A. C. & Roberts, J. B. (1958). The occurrence of polyβ-hydroxybutyric acid in aerobic gram-negative bacteria. Nature, Lond., 182, 800.CrossRefGoogle ScholarPubMed
Fraser, R. D. B. (1952). Infra-red dichroism of tobacco mosaic virus nucleo-protein. Nature, Lond., 170, 491.CrossRefGoogle Scholar
Fraser, R. D. B. (1953). The infra-red spectra of biologically important molecules. Progress in Biophysics and Biophysical Chemistry, 3, 47. London: Pergamon Press Ltd.Google Scholar
Fraser, R. D. B. & Chayen, J. (1952). The detection of nucleic acid in tissues by infra-red microspectrometry. Exp. Cell Res. 3, 492.CrossRefGoogle Scholar
Gary, N. D., Kupferberg, L. L. & Graf, L. H. (1958). Characterization of intracellular, glucosidic polysaccharide produced by Brucella suis. J. Bact. 76, 359.CrossRefGoogle ScholarPubMed
Goulden, J. D. S. & Sharpe, M. E. (1958). The infra-red absorption spectra of Lactobacilli. J. gen. Microbiol. 19, 76.CrossRefGoogle ScholarPubMed
Goulden, J. D. S. & White, J. W. (1958). Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk. Nature, Lond., 181, 266.CrossRefGoogle ScholarPubMed
Greenstreet, J. E. S. & Norris, K. P. (1957). The existence of differences between the infra-red absorption spectra of bacteria. Spectrochim, Acta, 9, 177.CrossRefGoogle Scholar
Harrell, W. K. (1954). Fractionation and differentiation of human, bovine and avian strains of Mycobacterium tuberculosis by means of their infrared spectrums. Thesis, University of Michigan.Google Scholar
Hayaisha, O., Tabor, H. & Hayaishi, T. (1957). N-formino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazole-acetic acid to formylaspartic acid. J. biol. Chem. 227, 161.CrossRefGoogle Scholar
Haynes, W. C., Melvin, E. H., Locke, J. M., Glass, C. A. & Senti, F. R. (1958). Certain factors affecting the infrared spectra of selected micro-organisms. Appl. Microbiol. 6, 298.CrossRefGoogle Scholar
Hestrin, S. & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. Biochem. J. 58, 345.CrossRefGoogle ScholarPubMed
Hofmann, K. & Tausig, F. (1955). On the identity of phytomonic and lactobacillic acids. A reinvestigation of the fatty acid spectrum of Agrobacterium tumefaciens. J. biol. Chem. 213, 425.CrossRefGoogle Scholar
Jeans, A., Haynes, W. C., Wilham, C. A., Ramkin, J. C., Melvin, E. H., Austin, M. J., Cheskey, J. E., Fisher, B. E., Tsuchiya, H. M. & Rist, C. E. (1954). Characterization and classification of Dextrans from ninety-six strains of bacteria. J. Amer. Chem. Soc. 76, 5041.CrossRefGoogle Scholar
Jones, R. N. & Sandorfy, C. (1956). Technique of Organic Chemistry. Chemical Applications of Spectroscopy. 9, 247. New York: Interscience Publ. Inc..Google Scholar
Kabler, P. W., Riddle, J. W. & Kenner, B. A. (1956). Differentiation of coliform organisms by infrared spectrophotometry. Bact. Proc. 103.Google Scholar
Katz, E. & Wassink, E. C. (1939). Infrared absorption spectra of chlorophyllous pigments in living cells and in extra-cellular states. Enzymologia, Amsterdam 7, 97.Google Scholar
Kendall, D. N. (1953). Identification of polymorphic forms of crystals by infrared spectroscopy. Analyt. Chem. 25, 382.CrossRefGoogle Scholar
Kenner, B. A., Riddle, J. W., Rockwood, S. W. & Bordner, R. H. (1958). Bacterial identification by infrared spectrophotometry. II. Effect of instrumental and environmental variables. J. Bact. 75, 16.CrossRefGoogle ScholarPubMed
Kent, L. H., Record, B. R. & Wallis, R.G. (1957). Physico-chemical studies of poly-d-glutamic acid from Bacillus anthracis grown in vitro. Phil. Trans. 250, 1.Google Scholar
Kubica, G. P., Randall, H. M. & Smith, D. W. (1956). Correlation of biologic properties of strains of Mycobacterium with their infrared spectrums. IV. Fractionation and comparison of the lipids of human strains of Mycobacterium, tuberculosis by means of their infrared spectrums. Amer. Rev. Tuberc. 73, 529.Google ScholarPubMed
Kull, F. C. & Grimm, M. R. (1954). The use of infrared spectroscopy in a study of bacterial resistance. Bact. Proc. 26.Google Scholar
Kull, F. C. & Grimm, M. R. (1956a). Infrared absorption spectra of Bacillus megaterium phages and host cells. Virology, 2, 131.CrossRefGoogle Scholar
Kull, F. C. & Grimm, M. R. (1956b). Differentiation of resistant mutants by infrared analysis. J. Bact. 71, 342.CrossRefGoogle ScholarPubMed
Kull, F. C. & Grimm, M. R. (1956c). Limitations of infrared spectroscopy in microbiological research. Bact. Proc. 137.Google Scholar
Lancet, . (1952). Annotations, 263, 574.Google Scholar
Lembke, A. & Kaufman, W. (1954). Spectrophotometric measurements on bacteria in the infrared region. Kieler milchwirtschaftliche forschungsberichte, 6, 619.Google Scholar
Lenormant, H. (1953). Sur l'application de la spectrographie infra-rouge à l'étude des cellules et des tissus vivants. Données sur la structure des protéines endocellulaires. C. R. Soc. Biol. Paris, 147, 406.Google Scholar
Levi, L., Matheson, B. H. & Thatcher, F. S. (1956). Detection of staphylococcus entero-toxin by infrared spectrophotometry. Science, 123, 64.CrossRefGoogle Scholar
Levine, S. (1953). A bibliography on applications of infrared spectrophotometry in the biological sciences. Environmental Health Center, U.S.P.H.S., Cincinnati, Ohio.Google Scholar
Levine, S., Stevenson, H. J. R. & Bordner, R. H. (1953). Identification of glycogen in whole bacterial cells by infrared spectrophotometry. Science, 118, 141.CrossRefGoogle ScholarPubMed
Levine, S., Stevenson, H. J. R., Bordner, R. H. & Edwards, P. R. (1955). Typing of Klebsiella by infrared spectrophotometry. J. infect. Dis. 96, 193.CrossRefGoogle ScholarPubMed
Levine, S., Stevenson, H. J. R. & Chambers, L. A. (1952). Infrared studies of whole bacteria. Bact. Proc. 32.Google Scholar
Levine, S., Stevenson, H. J. R., Chambers, L. A. & Kenner, B. A. (1953). Infrared spectrophotometry of enteric bacteria. J. Bact. 65, 10.CrossRefGoogle ScholarPubMed
Levine, S., Stevenson, H. J. R. & Kabler, P. W. (1953). Qualitative studies of pneumococcal polysaccharides by infrared spectrophotometry. Arch. Biochem. & Biophys. 45, 65.CrossRefGoogle ScholarPubMed
Levine, S., Stevenson, H. J. R., Tabor, E. C., Bordner, R. H. & Chambers, L. A. (1953). Glycogen of enteric bacteria. J. Bact. 66, 664.CrossRefGoogle ScholarPubMed
MacLennan, A. P. & Davies, D. A. L. (1957). The isolation of D-glycero-D-galactoheptose and other sugar components from the specific polysaccharide of Chromobacterium violaceum (BN). Biochem. J. 66, 562.CrossRefGoogle ScholarPubMed
May, L. & Grenell, R. G. (1957). Infrared spectral studies of tissues. Ann. N.Y. Acad. Sci. 69, 171.CrossRefGoogle ScholarPubMed
Noll, H. (1957). The chemistry of some native constituents of the purified wax of Mycobacterium tuberculosis. J. biol. Chem. 224, 149.CrossRefGoogle ScholarPubMed
Noll, H. (1958). The chemistry of the native constituents of the acetone-soluble fat of Mycobacterium tuberculosis. II. Isolation and properties of a new crystalline naphthoquinone derivative related to vitamin K2. J. biol. Chem. 232, 919.CrossRefGoogle ScholarPubMed
Noll, H. & Bloch, H. (1955). Studies on the chemistry of the cord factor of Mycobacterium tuberculosis. J. biol. Chem. 214, 251.CrossRefGoogle ScholarPubMed
Noll, H. & Jackim, E. (1958). The chemistry of the native constituents of the acetone-soluble fat of Mycobacterium tuberculosis. I. Glycerides and Phosphoglycolipides. J. biol. Chem. 232, 903.CrossRefGoogle ScholarPubMed
Norris, K. P. (1953). The infra-red spectra of micro-organisms. Atti del VI Congressa Internazionale di Microbiologic, 1, 807.Google Scholar
Norris, K. P. & Greenstreet, J. E. S. (1958a). Infra-red absorption spectra of casein and lactose. Nature, Lond., 181, 265.CrossRefGoogle ScholarPubMed
Norris, K. P. & Greenstreet, J. E. S. (1958b). On the infrared absorption spectrum of Bacillus megaterium. J. gen. Microbiol. 19, 566.CrossRefGoogle ScholarPubMed
O'Connor, R. T., McCall, E. R. & Dupré, E. F. (1957). Differentiation of microorganisms by means of the infrared spectra of their acetone extracts. J. Bact. 73, 303.CrossRefGoogle ScholarPubMed
Perkin-Elmer Instrument News (1954). Model 131 Analyser, 5, no. 4, 1.Google Scholar
Pollard, M., Engley, F. B., Redmond, R. F., Chinn, H. I. & Mitchell, R. B. (1952). Infrared absorption spectra of viruses. Proc. Soc. exp. Biol., N.Y., 81, 10.CrossRefGoogle Scholar
Price, W. C. (1955). Infra-red spectroscopy and its application to pharmaceutical analysis. J. Pharm., Lond., 7, 153.CrossRefGoogle ScholarPubMed
Rabinowitz, J. C. & Pricer, W. E. (1956). Purine fermentation by Clostridium cylindrosporum. V. Forminoglycine. J. biol. Chem. 222, 537.CrossRefGoogle Scholar
Randall, H. M., Fowler, R. G., Fuson, M. & Dangl, J.R. (1949). Infrared Determination of Organic Structures. New York: D. van Nostrand Co. Inc.Google Scholar
Randall, H. M. & Smith, D. W. (1953). Infrared spectroscopy in bacteriological research. J. opt. Soc. Amer. 43, 1086.CrossRefGoogle ScholarPubMed
Randall, H. M., Smith, D. W., Colm, A. C. & Nungester, W. J. (1951). Correlation of biologic properties of strains of Mycobacterium with infra-red spectrums. I. Reproducibility of extracts of M. tuberculosis as determined by infra-red spectroscopy. Amer. Rev. Tuberc. 63, 373.Google ScholarPubMed
Randall, H. M., Smith, D. W. & Nungester, W. J. (1951). The adaptation of infra-red spectroscopy to bacteriological research. Progress Report on Veterans Administration Project no. V1001 M-1636.Google Scholar
Randall, H. M., Smith, D. W. & Nungester, W. J. (1952). Correlation of biologic properties of strains of Mycobacterium with infrared spectrums. II. The differentiation of two strains, H37Rv and H 37Ra. of M. tuberculosis by means of their infrared spectrums. Amer. Rev. Tuberc. 65, 477.Google Scholar
Riddle, J. W., Kabler, P. W., Kenner, B. A., Bordner, R. H., Rockwood, S. W. & Stevenson, H. J. R. (1956). Bacterial identification by infrared spectrophotometry. J. Bact. 72, 593.CrossRefGoogle Scholar
Rideal, E. K. & Adams, D. M. (1957). The interpretation and use of bacterial infrared spectra. Chem. & Ind. 762.Google Scholar
Rogoff, M. (1957). Automatic analysis of infrared spectra. Ann. N.Y. Acad. Sci. 69, 27.CrossRefGoogle ScholarPubMed
Schneider, M. D. & MacLaughlin, J. (1954). Characterization of complement-fixing fractions of Leptospira bataviae by infrared spectroscopy. Bact. Proc. 79.Google Scholar
Schneider, M. D. & McLaughlin, J. (1955). Infrared ectrophotometry of cellular constituents of leptospires. J. Bact. 70, 87.CrossRefGoogle ScholarPubMed
Schwarz, H. P., Riggs, H. E., Glick, C., Cameron, W., Beyer, E., Jaffe, B. & Trombetta, L. (1951). Infrared spectroscopy of tissues. Effect of insulin shock. Proc. Soc. exp. Biol. N.Y. 76, 267.CrossRefGoogle ScholarPubMed
Shrik, H. G. & Greathouse, G. A. (1952). Infrared spectra of bacterial cellulose. Analyt. Chem. 24, 1774.CrossRefGoogle Scholar
Siegel, B. V., Ng, Y. C., Freeman, K. K. & Bostick, W. L. (1957). Infra-red absorption studies of purified normal and virus infected mouse brains. J. Bact. 74, 695.CrossRefGoogle Scholar
Simon, S. & Hedrick, L. R. (1954). Infrared spectrophotometry of Hansenula anomola whole yeast cells and the yeast cellulose. Bact. proc. 26.Google Scholar
Simon, S. & Hedrick, L. R. (1955). Infrared spectrophotometry of Hansenula and Saccharomyces whole yeast cells and yeast cellulose. J. Bact. 69, 4.CrossRefGoogle ScholarPubMed
Smith, D. W. (1951). A study of the immunizing properties of fractions of the tubercle bacillus and a correlation of these properties with their infra-red spectra. Thesis, University of Michigan.Google Scholar
Smith, D. W., Harrell, W. K. & Randall, H. M. (1954). Correlation of biologic properties of strains of Mycobacterium with their infrared spectrums. III. Differentiation of bovine and human varieties of M. tuberculosis by means of their infrared spectrums. Amer. rev. Tuberc. 69, 505.Google ScholarPubMed
Smith, D. W., Randall, H. M., Gastambide-Odier, M. M. & Koevoet, A. L. (1957). The characterization of mycobacterial strains by the composition of their lipide extracts. Ann. N.Y. Acad. Sci. 69, 145.CrossRefGoogle ScholarPubMed
Stair, R. & Coblentz, W. W. (1935). Infrared absorption spectra of plant and animal tissue and of various other substances. J. Res. nat. Bur. Stand. 15, 295.CrossRefGoogle Scholar
Stevenson, H. J. R. & Bolduan, O. E. A. (1952). Infrared spectroscopy as a means for identification of bacteria. Science, 116, 111.CrossRefGoogle ScholarPubMed
Stevenson, H. J. R., & Levine, S. (1952). Infrared spectra of pneumococcal polysaccharides. Science, 116, 705.CrossRefGoogle ScholarPubMed
Stewart, W. D., Watchell, W. L., Shipman, J. J. & Yanko, J. A. (1955). Synthesis of rubber by fungi. Science, 122, 1271.CrossRefGoogle ScholarPubMed
Stimson, M. M. & O'Donnell, M. J. (1952). The infrared and ultraviolet absorption spectra of cytosine and isocytosine in the solid state. J. Amer. chem. Soc. 74, 1805.CrossRefGoogle Scholar
Sutherland, G. B. B. M. (1952). Infrared analysis of the structure of aminoacids, polypeptides and proteins. Advances in Protein Chemistry, 7, 291. New York: Academic Press Inc.Google Scholar
Thomas, L. C. & Greenstreet, J. E. S. (1954). The identification of micro-organisms by infrared spectrophotometry. Spectrochim. Acta. 6, 302.CrossRefGoogle Scholar
Thompson, H. W., Nicholson, D. L. & Short, L. N. (1950). The infra-red spectra of complex molecules. Discussion of Faraday Society, 9, 222.CrossRefGoogle Scholar
Wassink, E. C., Katz, E. & Dorrestein, R. (1939). Infrared absorption spectra of various strains of purple bacteria. Enzymologia, Amsterdam, 7, 113.Google Scholar
Webley, D. M., Duff, R. B. & Fabmer, V.C. (1957). Formation of a β-hydroxy acid as an intermediate in the microbiological conversion of monochlorophenoxybutyric acids to the corresponding substituted acetic acids. Nature, Lond., 179, 1130.CrossRefGoogle Scholar
Wolf, F. T., Jones, E. A. & Nathan, H.A. (1958). Fluorescent pigment of Microsporum. Nature, Lond., 182, 475.CrossRefGoogle Scholar
Wright, B. E. (1956). The role of polyglutamyl pteridine coenzyme in serine metabolism. J. biol. Chem. 219, 873.CrossRefGoogle ScholarPubMed