Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T01:06:02.157Z Has data issue: false hasContentIssue false

Experiments designed to determine the mechanism of the adjuvant activity of Gram-negative organisms upon antibody production

Published online by Cambridge University Press:  15 May 2009

J. R. Farthing
Affiliation:
Wright Fleming Institute of Microbiology, St Mary's Hospital Medical School, London, W. 2
L. B. Holt
Affiliation:
Wright Fleming Institute of Microbiology, St Mary's Hospital Medical School, London, W. 2
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The characteristics of Gram-negative organisms and some of the underlying reasons for their adjuvant action with diphtheria toxoid are described.

The adjuvant effect was shown by an earlier production of antitoxin, with a maintained differential advantage over controls, but with the usual decline in titre with passage of time. The adjuvant effect only occurred with a primary stimulus. There was no adsorption between toxoid and vaccine and mixture of the two was not necessary, but the vaccine had to be given simultaneously with or within 24 hr. following injection of the toxoid. There was evidence for believing that these adjuvants decreased the minimal stimulating dose of antigen and caused hyperplasia of antibody-producing cells. No direct link could be found between the characteristic stress symptoms caused by lipopolysaccharides and their ability to enhance antibody formation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

References

Barr, M. (1956). Brit. J. exp. Path. 37, 11.Google Scholar
Biozzi, G., Benacerraf, B. & Halpern, B. N. (1955). Brit. J. exp. Path. 36, 226.Google Scholar
Burrows, W. (1951). Annu. Rev. Microbiol. 5, 181.CrossRefGoogle Scholar
Condie, R. M., Zak, S. J. & Good, R. A. (1955). Proc. Soc. exp. Biol., N.Y., 90, 355.CrossRefGoogle Scholar
Dresser, D. W. (1961). Nature, Lond., 191, 1169.CrossRefGoogle Scholar
Faragó, F. & Pusztai, S. (1949). Brit. J. exp. Path., 30, 572.Google Scholar
Farthing, J. R. (1961). Brit. J. exp. Path. 42, 614.Google Scholar
Fleming, D. S., Greenberg, L. & Beith, E. M. (1948). Canad. med. Ass. J. 59, 101.Google Scholar
Good, R. A. (1955). J. Lab. clin. Med. 46, 167.Google Scholar
Greenberg, L. & Fleming, D. S. (1947). Canad. publ. Hlth J. 38, 279.Google Scholar
Greenberg, L. & Fleming, D. S. (1948). Canad. publ. Hlth J. 39, 131.Google Scholar
Holt, L. B. (1950). Developments in Diphtheria Prophylaxis. London: William Heinemann.Google Scholar
Holt, L. B. (1951). Brit. J. exp. Path. 32, 157.Google Scholar
Holt, L. B., Barnes, J. M., Bousfield, G., Spiller, V. & Croake, F. (1959). Bull. World Hlth Org. 20, 1121.Google Scholar
Johnson, A. G., Gaines, S. & Landy, M. (1956). J. exp. Med. 103, 225.CrossRefGoogle Scholar
Kind, P. & Johnson, A. G. (1959). J. Immunol. 82, 415.CrossRefGoogle Scholar
Landy, M. & Johnson, A. G. (1955). Proc. Soc. exp. Biol., N.Y., 90, 57.CrossRefGoogle Scholar
Maclean, I. H. & Holt, L. B. (1940). Lancet, ii, 581.CrossRefGoogle Scholar
Pound, A. W. (1958). J. Path. Bact. 75, 55.CrossRefGoogle Scholar
Ramon, G. (1931). Ann. Inst. Pasteur, 47, 339.Google Scholar
Ramon, G. & Zoeller, C. (1926). C.R. Soc. Biol., Paris, 94, 106.Google Scholar
Reed, L. H. & Muench, H. (1938). Amer. J. Hyg. 27, 493.Google Scholar
Ribi, E., Haskins, W. T., Landy, M. & Milner, K. C. (1961). Bact. Rev. 25, 427.CrossRefGoogle Scholar
Romer, P. & Sames, T. (1909). Z. ImmunForsch. 3, 344.Google Scholar
Stanley, N. F. (1958). Austr. J. exp. Biol. med. Sci. 28, 109.CrossRefGoogle Scholar
Ward, P. A., Johnson, A. G. & Abell, M. R. (1959). J. exp. Med. 109, 463.CrossRefGoogle Scholar
Westphal, P., Nowotny, A., Lüderitz, O., Hurni, H., Eichenberger, E. & Schönholzer, G. (1958). Pharm. Acta Helvet. 33, 401.Google Scholar
W.H.O. Monograph (1953). Tech. Rep. Ser. 61.Google Scholar