Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T16:14:57.175Z Has data issue: false hasContentIssue false

Effect of twelve antimicrobial drugs on the colonization resistance of the digestive tract of mice and on endogenous potentially pathogenic bacteria

Published online by Cambridge University Press:  25 March 2010

N. Wiegersma
Affiliation:
Laboratory for Medical Microbiology, University Hospital, Groningen, The Netherlands
G. Jansen
Affiliation:
Laboratory for Medical Microbiology, University Hospital, Groningen, The Netherlands
D. van der Waaij
Affiliation:
Laboratory for Medical Microbiology, University Hospital, Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twelve antimicrobial drugs were studied for their effect on the endogenous aerobic potentially pathogenic bacteria (Enterobacteriaceae, Streptococcus faecalis) in the intestines and on the colonization resistance (CR) of the digestive tract. Three subclasses of antimicrobial drugs could be recognized: (1) those which suppress the CR following low oral doses (rifamycin, penicillin V, cloxacillin, fenethicillin); (2) those in which the CR is suppressed only following relatively high oral doses (amoxycillin); and (3) those in which no obvious suppression of the CR was noticed even following substantial oral doses (nalidixic acid, cinoxacin, co-trimoxazole, oral cephalosporins, piv-mecillinam and doxycyclin). Some of the drugs in the third category were found to suppress endogenous Enterobacteriaceae (nalidixic acid, co-trimoxazole, piv-mecillinam and doxycyclin) and S. faecalis (doxycyclin) at dose levels at which they did not decrease CR.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Emmelot, C. H. & Van der Waaij, D. (1980). The dose at which neomycin and polymyxin B can be applied for selective decontamination of the digestive tract. Journal of Hygiene 84, 331340.CrossRefGoogle ScholarPubMed
Heidt, P. J. (1979). Selective decontamination of the digestive tract of various animal species. In New Criteria for Antimicrobial Therapy: Maintenance of Digestive Tract Colonization Resistance (ed. Van der Waaij, D. and Verhoef, J.), pp. 5462. Amsterdam-Oxford: Excerpta Medica (ICS 477).Google Scholar
Hinton, N. A. (1970). The effect of oral tetracyclin HC1 and doxycyclin on the intestinal flora. Current Therapeutic Research 12, 341352.Google Scholar
Hirsch, D. C., Burton, G. C. & Blenden, D. C. (1974). The effect of tetracyclin upon establishment of Escherichia coli of bovine origin in the enteric tract of man. Journal of Applied Bacteriology 37, 327333.CrossRefGoogle Scholar
Holzman, R. S., Florman, A. L., Podrid, Ph. J., Simberkoff, M. S. & Toharsky, B. (1974). Drug-associated diarrhoea as a potential reservoir for hospital infection. Lancet i, 11951196.CrossRefGoogle Scholar
Jones, R. J. & Curtiss, R. (1970). Genetic exchange between E. coli strains in the mouse intestines. Journal of Bacteriology 103, 7180.CrossRefGoogle Scholar
Kasuya, M. (1964). Transfer of drug resistance between enteric bacteria induced in the mouse intestine. Journal of Bacteriology 88. 322328.Google Scholar
Koopman, J. P., Janssen, F. G. J. & Druten, J. A. M. (1977). The relation between the intestinal microflora and intestinal parameters in mice. Zeitschrift für Versuchstierkunde 19, 54.Google ScholarPubMed
Louria, D. B. & Kaminski, T. (1962). The effect of four antimicrobial drug regimens on sputum superinfection in hospitalized patients. American Review of Respiratory Diseases 85, 649665.Google ScholarPubMed
Pollack, M., Charache, P., Nieman, R. K., Jett, M. P., Reinhardt, J. A. & Hardy, P. H. J. (1972). Factors influencing colonization and antibiotic resistance patterns of gram-negative bacteria in hospital patients. Lancet, ii, 668671.CrossRefGoogle Scholar
Reed, M. D., Sieckmann, D. G. & Georgi, C. E. (1969). Transfer of infectious drug resistance in microbiologically defined mice. Journal of Bacteriology 100, 2226.CrossRefGoogle ScholarPubMed
Selden, R., Lee, S.Wang, W. L. L., Bennett, J. V. & Eickhoff, T. C. (1971). Nosocomial Klebsiella infections: intestinal colonization as a reservoir. Annals of Internal Medicine 74, 657664.CrossRefGoogle ScholarPubMed
Thijm, H. A. & Van der Waaij, D. (1979). The effect of three frequently applied antibiotics on the colonization resistance of the digestive tract of mice. Journal of Hygiene 82, 397405.CrossRefGoogle ScholarPubMed
Van der Waaij, D. (1979). Colonization resistance of the digestive tract as a major lead in the selection of antibiotics for therapy. In Sew Criteria for Antimicrobial Therapy: Maintenance of Digestive Tract Colonization Resistance (ed. Van der Waaij, D. and Verhoef, J.), pp. 271282. Amsterdam-Oxford: Excerpta Medica (ICS 477).Google Scholar
Van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van der Wees, J. E. C. (1971). Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. Journal of Hygiene 69, 405411.CrossRefGoogle ScholarPubMed
Van der Waaij, D., Berghuis, J. M. & Lekkerkerk, J. E. C. (1972). Colonization resistance of the digestive tract of mice during systemic antibiotic treatment. Journal of Hygiene 70, 605610.CrossRefGoogle ScholarPubMed
Van Der Waaij, D. & Berghuis-De Vries, J. M. (1974). Selective elimination of Enterobacteriaceae species from the digestive tract in mice and monkeys. Journal of Hygiene 72, 205211.CrossRefGoogle ScholarPubMed
Welling, G. W. (1979). Beta-aspartylglycine, an indicator of decreased colonization resistance ? In New Criteria for Antimicrobial Therapy: Maintenance of Digestive Tract Colonization Resistance (ed. Van der Waaij, D. and Verhoef, J.). pp. 6573. Amsterdam-Oxford: Excerpta Medica (ICS 477).Google Scholar