Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T01:18:50.612Z Has data issue: false hasContentIssue false

Homoeosis, canalization, decanalization, ‘characters’ and angiosperm origins

Published online by Cambridge University Press:  26 April 2010

D. J. Mabberley
Affiliation:
Royal Botanic Gardens Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
A. Hay
Affiliation:
Royal Botanic Gardens Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
Get access

Abstract

Reproductive structure is considered in the context of process morphology: the significance of homoeotic transformations is commented on in Araceae and other modern angiosperms. Disruption leads to the rearrangement of processes and destabilization of process combinations, or decanalization. This is apparently more readily achieved in certain extant angiosperms than in others; both environmentally triggered decanalization, including galling, and genetically prompted decanalization are discussed and illustrated with examples including those leading to the expression of ‘lost’ features. This is extended to a consideration of ‘character’ comparisons in extant angiosperms and possible pitfalls there. Finally, this approach is applied to the relationship of certain extant groups of seed-plants and their fossil allies and it is concluded that modem ones are (distantly) interrelated relics of a complex of ‘hemiangiosperms’ of the Triassic.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arber, E. A. N. & Parkin, J. (1908). Studies on the evolution of angiosperms. The relationship of the angiosperms to the Gnetales. Ann. Bot. 22: 489515.CrossRefGoogle Scholar
Briggs, D. & Walters, S. M. (1984). Plant variation and evolution. 2nd ed.Cambridge University Press.Google Scholar
Burtt, B. L. (1994). A commentary on some recurrent forms and changes of form in angiosperms. In: Ingram, D. (ed.) Shape and form in plants and fungi, (in press). Academic Press.Google Scholar
Carlquist, S. (1987). Presence of vessels in wood of Sarcandra (Chloranthaceae): comments on vessel origins in angiosperms. Amer. J. Bot. 74: 17651771.CrossRefGoogle Scholar
Coen, E. & Meyerowltz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 3137.CrossRefGoogle ScholarPubMed
Corner, E. J. H. (1958). Transference of function. J. Linn. Soc. Bot. 90: 3340; J. Linn. Soc. Zool. 44: 33–40.Google Scholar
Corner, E. J. H. (1966). The natural history of palms. London: Weidenfeld & Nicholson.Google Scholar
Corner, E. J. H. (1967). Ficus in the Solomon Islands and its bearing on the post-Jurassic history of Melanesia. Phil. Trans. Roy. Soc. London B 253: 23159.Google Scholar
Cornet, B. (1989). The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the late Triassic. Evol. Trends Plants 3: 2551.Google Scholar
Crane, P. R. & Upchurch, G. R. (1987). Drewria potomacensis gen. et sp. nov., an early Cretaceous member of Gnetales from the Potomac Group of Virginia. Amer. J. Bot. 74: 17221736.CrossRefGoogle Scholar
Cronquist, A. (1988). The evolution and classification of flowering plants. 2nd ed.New York Botanical Garden.Google Scholar
Doyle, J. A. & Donoghue, M. J. (1986). Relationships of angiosperms and Gnetales: a numerical cladistic analysis. In: Spicer, R. A. & Thomas, B. A. (eds) Systematic and taxonomic approaches in palaeobotany, pp. 117198. [Syst. Assoc. Spec. Publ. 31]. Oxford: Clarendon Press.Google Scholar
Eames, A. J. (1952). Relationships of the Ephedrales. Phytomorphology 2: 79100.Google Scholar
Fisher, J. B. & Rutishauser, R. (1990). Leaves and epiphyllous shoots in Chisocheton (Meliaceae): a continuum of woody leaf and stem axes. Can. J. Bot. 68: 23162328.CrossRefGoogle Scholar
Friedman, W. E. (1990). Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of the angiosperms. Science 247: 951954.CrossRefGoogle ScholarPubMed
Friedman, W. E. (1992). Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. Science 255: 336339.CrossRefGoogle ScholarPubMed
Gottlieb, O. R. & Kubitzki, K. (1984). Chemosystematics of the Gnetatae and the chemical evolution of seed plants. Planta Med. 50: 380385.CrossRefGoogle Scholar
Gould, S. J. & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. London, ser. B, Biol. Sci. 205: 581598.Google Scholar
Green, D. M. (1991). Chaos, fractals and nonlinear dynamics in evolution and phylogeny. Trends Ecol. Evol. 10: 333337.CrossRefGoogle Scholar
Groenendael, J. M. Van (1985). Teratology and metameric plant construction. New Phytol. 99: 171178.CrossRefGoogle Scholar
Hallé, F. (1978). Architectural variation at the specific level in tropical trees. In: Tomlinson, P. B. & Zimmermann, M. H. (eds) Tropical trees as living systems, pp. 209221. Cambridge University Press.Google Scholar
Hay, A. (submitted). Alternative conceptual bases in structural botany. Ann. Bot.Google Scholar
Hay, A. & Mabberley, D. J. (1991). ‘Transference of function’ and the origin of aroids: their significance in early angiosperm evolution. Bot. Jahrb. 113: 330428.Google Scholar
Hay, A. & Mabberley, D. J. (1994). On perception of plant morphology: some implications for phylogeny. In: Ingram, D. (ed.) Shape and form in plants and fungi, (in press). Academic Press.Google Scholar
Higton, R. N. & Mabberley, D. J. (1994). A willow gall from the galler's point of view. In: Williams, M. A. J. (ed.) Plant galls: organisms, interactions and populations, (in press). Oxford University Press.Google Scholar
Hughes, N. F. (1976). Palaeobiology of angiosperm origins. Cambridge University Press.Google Scholar
Jenkins, R. M. (1993). The origin of the Fagaceous cupule. Bot. Rev. 59: 81111.CrossRefGoogle Scholar
Jenkins, R. M. & Mabberley, D. J. (1994). A breadfruit among the dipterocarps: galls and atavism. In: Williams, M. A. J. (ed.) Plant galls: organisms, interactions and populations, (in press). Oxford University Press.Google Scholar
Jong, K. & Burtt, B. L. (1975). The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol. 75: 297311.CrossRefGoogle Scholar
Kirchoff, B. K. (1991). Homeosis in the flowers of Zingiberales. Amer. J. Bot. 78: 833837.CrossRefGoogle Scholar
Kollar, E. J. & Fisher, C. (1980). Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207: 993995.CrossRefGoogle ScholarPubMed
Leavitt, R. G. (1905). On translocation of characters in plants. Rhodora 7: 1331.Google Scholar
Leavitt, R. G. (1909). A vegetative mutant, and the principle of homeosis in plants. Bot. Gaz.. 47: 3068.CrossRefGoogle Scholar
Lehmann, N. L. & Sattler, R. (1992). Irregular floral development in Calla palustris (Araceae) and the concept of homeosis. Amer. J. Bot. 79: 11451157.CrossRefGoogle ScholarPubMed
Mabberley, D. J. (1974). Branching in pachycaul Senecios: the Durian Theory and the evolution of angiospermous trees and herbs. New Phytol. 73: 967975.CrossRefGoogle Scholar
Mabberley, D. J. (1979). The species of Chisocheton (Meliaceae). Bull. Brit. Mus. (Nat. Hist.), Bot. 6: 301386.Google Scholar
Mabberley, D. J. (1984). The optimistic in pursuit of the unrecognisable: a note on the origin of angiosperms. Taxon 33: 7779.CrossRefGoogle Scholar
Mabberley, D. J. (1987). The plant-book. A portable dictionary of the higher plants. Cambridge University Press.Google Scholar
Mabberley, D. J. (1992). Tropical rainforest ecology. 2nd ed. Glasgow: Blackie.Google Scholar
Macduffie, R. C. (1921). Vessels of the Gnetalean type in angiosperms. Bot. Gaz. 71: 438445.CrossRefGoogle Scholar
Martens, P. (1971). Les Gnétophytes [Handb. Pflanzenanatomie, Spec. pt. XII, 2]. Bornträger, Berlin.Google Scholar
Martin, W., Gieri, A. & Saedler, H. (1989). Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 4648.CrossRefGoogle Scholar
Meeuse, A. D. J. (1990). Flowers and fossils, p. 87. Delft: Eburon.Google Scholar
Muhammad, A. F. & Sattler, R. (1982). Vessel structure of Gnetum and the origin of the angiosperms. Amer. J. Bot. 65: 10041021.CrossRefGoogle Scholar
Obeso, J. R. (1987). Desarrollo anormal en brotes de Rubus ulmifolius Schott. Anales Jard. Bot. Madrid 44: 4144.Google Scholar
Rosenblum, I. M. & Basile, D. V. (1984). Hormonal regulation of morphogenesis in Streptocarpus and its relevance to the evolutionary history of the Gesneriaceae. Amer. J. Bot. 71: 5264.CrossRefGoogle Scholar
Sattler, R. (1974). A new approach to gynoecial morphology. Phytomorphology 24: 2234.Google Scholar
Sattler, R. (1984). Homology — a continuing challenge. Syst. Bot. 9: 382394.CrossRefGoogle Scholar
Sattler, R. (1988). Homeosis in plants. Amer. J. Bot. 75: 16061617.CrossRefGoogle Scholar
Sattler, R. (1992). Process morphology: structural dynamics in development and evolution. Can. J.Bot. 70:708714.CrossRefGoogle Scholar
Sattler, R. (1993). Why do we need a more dynamic study of morphogenesis? Descriptive and comparative aspects. Can. J. Bot. (in press).Google Scholar
Sattler, R. (1994). Homology, homeosis and process morphology in plants. In: HALL, B. K. (ed.) Homology: the hierarchical basis of comparative biology, (in press). Academic Press.Google Scholar
Sawhney, V. K. (1992). Floral mutants in tomato: development, physiology, and evolutionary implications. Can. J. Bot.. 70: 701707.CrossRefGoogle Scholar
Smith-Huerta, N. L. (1992). A comparison of floral development in wild type and a homeotic sepaloid petal mutant of Clarkia tembloriensis (Onagraceae). Amer. J. Bot.. 79: 14231430.CrossRefGoogle Scholar
Sussex, I. M. (1955). Experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5: 286300.Google Scholar
Tucker, S. C. (1992). The role of floral development in studies of legume evolution. Can. J. Bot. 70: 692700.CrossRefGoogle Scholar
Usha Rao, I. & Mohan Ram, H. Y. (1985). Development of virescent capitula and conversion of florets to vegetative shoots in Calendula officinalis. Phytomorphology 34: 243246.Google Scholar
Westphal, E. (1985). Potentialités morphog`nes de l'épiderme foliaire de Solanum dulcamara parasité par Eriophyes lycopersici. Beitr. Biol. Pflanzen. 60: 475481.Google Scholar
Zavada, M. S. & Gabarayeva, N. (1991). Comparative pollen wall development of Welwitschia mirabilis and selected primitive angiosperms. Bull. Torrey Bot. Club 118: 292302.CrossRefGoogle Scholar