Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-28T11:33:39.054Z Has data issue: false hasContentIssue false

Peraluminous granites: the effect of alumina on melt composition and coexisting minerals

Published online by Cambridge University Press:  03 November 2011

François Holtz
Affiliation:
Francois Holtz, Institut für Mineralogie, Universität Hannover, Welfengarten 1, D-3000 Hannover 1, Germany
Wilhelm Johannes
Affiliation:
Wilhelm Johannes, Institut für Mineralogie, Universität Hannover, Welfengarten 1, D-3000 Hannover 1, Germany
Michel Pichavant
Affiliation:
Michel Pichavant, CRSCM-CNRS, 1A rue de la Férollerie, 45071 Orléans Cedex 02, France

Abstract

Liquidus phase relationships at H2O-saturated and -undersaturated conditions and 2 kbar in the systems Qz-Or-Ab (SiO2-KAlSi3O8-NaAlSi3O8), Qz-Or-Ab-Al2O3, and subsystems are compared and discussed. In the peraluminous systems (i.e. when melts are saturated with respect to mullite) the liquidus temperatures are lowered by 40-55°C for compositions in the quartz primary field and by 15-25°C for cotectic compositions. The composition of the Qz-Ab eutectic and of the minimum are slightly shifted towards more Qz-rich compositions (minimum composition at P(H2O) = 2 kbar in the system Qz-Or-Ab-A12O3, saturated with respect to mullite: Qz40Or23Ab37). In melts saturated with sillimanite or mullite, the effect of high Al content may be lower for the Qz-Or than for the Qz-Ab eutectic.

The depression of the liquidus temperatures may be partly related to the higher H2O solubility in melts saturated with respect to mullite. The solubility of H2O in a melt with a composition of Qz28Or34Ab38 at 2 kbar and 800°C is 5·77 ± 0·15 wt% H2O and 6·36 ± 0·30 wt% H2O in a melt with the same Qz/Or/Ab proportions but saturated with respect to mullite.

The effect of high Al contents on the Mg and Fe contents of Ca-free granite melts was investigated at 775°C-3 kbar (melts coexisting with phlogopite), and at 820°C-2 kbar (melts coexisting with biotite and spinel), under NNO buffer conditions. Less than 0·15 wt% MgO is incorporated in subaluminous melts coexisting with phlogopite, whereas peraluminous melts (2·9 wt% normative corundum) contain 0·6–0·7 wt% MgO. A similar behaviour of the MgO content is observed for melts coexisting with biotite. In contrast, no significant effect of high Al contents on the FeO content of melt coexisting with biotite was observed. This suggests that the Fe/Mg ratio may be significantly lower in peraluminous than in subaluminous granitic melts.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. N. Jr 1985. Muscovite-bearing granites in the AFM liquidus projection. CAN MINERAL 23, 553–61.Google Scholar
Abbott, R. N. Jr & Clarke, D. B. 1979. Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for a(H2O)≤1. CAN MINERAL 17, 549–60.Google Scholar
Bea, F., Fershtater, G. & Corretgé, L. G. 1992. The geochemistry of phosphorus in granite rocks. LITHOS (in press).CrossRefGoogle Scholar
Bohlen, S. R., Boettcher, A. L., Wall, V. J. & Clemens, J. D. 1983. Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. CONTRIB MINERAL PETROL 83, 270–7.CrossRefGoogle Scholar
Burnham, C. W. 1979. The importance of volatile constituents. In Yoder, H. S. (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives, 439–82. Princeton: Princeton University Press.Google Scholar
Burnham, C. W. & Jahns, R. H. 1962. A method for determining the solubility of water in silicate melts. AM J SCI 260, 721–45.CrossRefGoogle Scholar
Burnham, C. W. & Nekvasil, H. 1986. Equilibrium properties of granite pegmatite magmas. AM MINERAL 71, 239–63.Google Scholar
Castelli, D. & Lombardo, B. 1988. The Gophu La and Western Lunana granites: Miocene muscovite leucogranites of the Bhutan Himalaya. LITHOS 21, 211–25.CrossRefGoogle Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1, 111–38.CrossRefGoogle Scholar
Chorlton, L. B. & Martin, R. F. 1978. The effect of boron on the granite solidus. CAN MINERAL 16, 239–44.Google Scholar
Clemens, J. D. & Wall, V. J. 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. CAN MINERAL 19, 111–31.Google Scholar
Clemens, J. D., Holloway, J. R. & White, A. J. R. 1986. Origin of an A-type granite: experimental constraints. AM MINERAL 71, 317–24.Google Scholar
Conrad, W. K., Nicholls, I. A. & Wall, V. J. 1988. Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. J PETROL 29, 765803.CrossRefGoogle Scholar
Day, H. W. & Fenn, P. M. 1982. Estimating the P-T-X(H2O) conditions during crystallization of low calcium granites. J GEOLOGY 90, 485507.CrossRefGoogle Scholar
Dimitriadis, S. 1978. Some liquid compositions in the peraluminous haplo-granite system. N JAHRB MINER MONATSH 1978, 377–83.Google Scholar
Dingwell, D. B., Harris, D. M. & Scarfe, C. M. 1984. The solubility of H2O in melts in the system SiO2-Al2O3-Na2O-K2O at 1 to 2 kbars. J GEOLOGY 92, 387–95.CrossRefGoogle Scholar
Ebadi, A. & Johannes, W. 1991. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. CONTRIB MINERAL PETROL 106, 286–95.CrossRefGoogle Scholar
France-Lanord, C. & Fort, P.Le 1988. Crustal melting and granite genesis during the Himalayan collision orogenesis. TRANS R SOC EDINBURGH EARTH SCI 79, 197207.Google Scholar
Hamilton, D. L. & Oxtoby, S. 1986. Solubility of water in albite melt determined by the weight-loss method. J GEOLOGY 94, 626–30.CrossRefGoogle Scholar
Harrison, T. M. & Watson, E. B. 1983. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. GEOCHEM COSMOCHIM ACTA 48, 1467–77.Google Scholar
Holtz, F., Behrens, H., Dingwell, D. B. & Taylor, R. 1992a. Water solubility in aluminosilicate melts of haplogranitic compositions at 2 kbar. CHEM GEOL (in press).CrossRefGoogle Scholar
Holtz, F., Pichavant, M., Barbey, P. & Johannes, W. 1992b. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. AM MINERAL (submitted).Google Scholar
Holtz, F., Johannes, W. & Pichavant, M. 1992c. Effect of excess aluminium on phase relations in the system Qz-Ab-Or. Experimental investigation at 2 kbar and reduced H2O-activity. EUR J MINERAL 4, 137–52.CrossRefGoogle Scholar
James, R. S. & Hamilton, D. L. 1969. Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAlSi3O8-SiO2 at 1 kilobar water vapour pressure. CONTRIB MINERAL PETROL 84, 355–64.Google Scholar
Keppler, H. 1989. The influence of the fluid phase composition on solidus temperatures in the haplogranite system NaAlSi3O8KAlSi3O8-SiO2-H2O-CO2. CONTRIB MINERAL PETROL 102, 321–7.CrossRefGoogle Scholar
Breton, N.Le & Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite metapelites in the early stages of crustal anatexis. CONTRIB MINERAL PETROL 99, 226–37.CrossRefGoogle Scholar
Fort, P.Le 1981. Manaslu leucogranite: a collision signature of the Himalaya, a model for its genesis and emplacement. J GEOPHYS RES 86, 10, 545–68.Google Scholar
London, D., Hervig, R. L. & Morgan, G. B. VI,1989. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 Mpa. CONTRIB MINERAL PETROL 99, 360–73.CrossRefGoogle Scholar
Luth, W. C. 1976. Granitic rocks. In Bailey, D. K. & MacDonalds, R. (eds) The evolution of the crystalline rocks, 335417. London: Academic Press.Google Scholar
Manning, D. A. C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kbar. CONTRIB MINERAL PETROL 76, 206–15.CrossRefGoogle Scholar
McMillan, P. F. & Holloway, J. R. 1987. Water solubility in aluminosilicate melts. CONTRIB MINERAL PETROL 97, 320–32.CrossRefGoogle Scholar
Miller, C. F., Watson, A. B. & Rapp, R. P. 1985. Experimental investigation of mafic mineral-felsic liquid equilibria: preliminary results and petrogenetic implications. EOS 66, 1130.Google Scholar
Montel, J. M., Mouchel, R. & Pichavant, M. 1988. High apatite solubility in peraluminous melts. TERRA ABSTR 8, 71.Google Scholar
Murrell, J. S. 1983. An experimental study of the effects of lithium on the granite system. PROC USSHER SOC 5, 417–20.Google Scholar
Naney, M. T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. AM J SCI 283, 9931033.CrossRefGoogle Scholar
Peterson, J. W. & Newton, R. C. 1989. Reversed experiments on biotite-quartz-feldspar melting in the system KMASH: implications for crustal anatexis. J GEOLOGY 97, 46585Google Scholar
Pichavant, M. 1981. An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. CONTRIB MINERAL PETROL 76, 430–9.Google Scholar
Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. AM MINERAL 72, 1056–70.Google Scholar
Pichavant, M., Valencia, , Herrera, J., Boulmier, S., Briqueu, L., Joron, J. L., Juteau, M., Marin, L., Michard, A., Sheppard, S. M. F., Treuil, M. & Vernet, M. 1987. The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In Mysen, B. O. (ed.) Magmatic processes: physicochemical principles, 359–73. GEOCHEM SOC SPEC PUBL 1.Google Scholar
Pichavant, M., Holtz, F. & McMillan, P. 1992. Phase relations and compositional dependence of H2O solubility in quartz-feldspar melts. CHEM GEOL (in press).CrossRefGoogle Scholar
Puziewicz, J. & Johannes, W. 1988. Phase equilibria and compositions of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitic systems. CONTRIB MINERAL PETROL 100, 156–68.CrossRefGoogle Scholar
Puziewicz, J. & Johannes, W. 1990. Experimental study of a biotite-bearing system under water-saturated and water-undersaturated conditions. CONTRIB MINERAL PETROL 104, 397406.CrossRefGoogle Scholar
Scaillet, B., France-Lanord, C. & Fort, P.Le 1990. Badrinath-Gangotri plutons. Petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. J VOLC GEOTHERM RES 44, 163–88.Google Scholar
Shaw, H. R. 1963. The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. AM MINERAL 48, 883–96.Google Scholar
Thompson, A. B. & Algor, J. R. 1977. Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. CONTRIB MINERAL PETROL 63, 247–69.CrossRefGoogle Scholar
Tuttle, O. F. & Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. GEOL SOC AM MEM 74.Google Scholar
Voigt, D. E., Bodnar, R. J. & Blencoe, J. G. 1981. Water solubility in melts of alkali feldspar composition at 5 kbar, 950°C. EOS 62, 428.Google Scholar
Voigt, D. E. & Burnham, C. W. 1983. The solubility of Al2SiO5 in the system KAlSi3O8-SiO2-H2O at 2 kbar, and its implication for melt speciation. EOS 64, 342.Google Scholar
Voigt, D. E. & Joyce, D. B. 1991. Depression of the granite minimum by the addition of sillimanite. EOS 72, 304.Google Scholar
Wall, V. J., Clemens, J. D. & Clarke, D. B. 1987. Models for granitoid evolution and source compositions. J GEOL 95, 731–49.CrossRefGoogle Scholar