Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T22:00:21.752Z Has data issue: false hasContentIssue false

Does the Public Health Security Capacity Provide Better Preparedness for Health Emergencies? A Cross-Sectional Analysis of 180 Countries During the COVID-19 Outbreak

Published online by Cambridge University Press:  12 December 2022

Veli Durmuş*
Affiliation:
Marmara University, Institute of Health Sciences, Istanbul, Turkey
*
Corresponding author: Veli Durmuş, Email: velidurmus@marun.edu.tr

Abstract

Objectives:

This study aimed to investigate the association between the health security capacities at the national level and preparedness for health emergencies in response to the COVID-19 outbreak.

Methods:

Data were extracted from the GHS report to evaluate the global health security capabilities in 180 countries. A linear regression analysis was performed with COVID-19 outcomes, as measured by the rate of incidence and vaccination doses, CFR, and PCR tests. Spearman correlation was used among potential explanatory factors.

Findings:

The GHS Index was inversely correlated with CFR and incidence rates, whereas it was positively associated with the vaccination and the PCR test rates. Countries with high health security capacities were significantly more likely to provide better preparedness for health emergencies in response to the outbreak. However, the vaccination doses’ rate and the number of PCR tests were significantly differ depending on countries’ income levels.

Conclusions:

Although health security capacity is essential to control public health emergencies effectively, it cannot predict whether or how well a country will use them in a crisis. Policymakers should identify their risk factors and capacity gaps and take into consideration the building of health security capacities in national budgets for long-term public health preparedness.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (WHO). Building health systems resilience for universal health coverage and health security during the COVID-19 pandemic and beyond. WHO Position Paper; 2021. https://apps.who.int/iris/rest/bitstreams/1380438/retrieve. Accessed March 5, 2022.Google Scholar
Lin, T, Qiu, Y, Peng, W, Peng, L. Global research on public health emergency preparedness from 1997 to 2019: a bibliometric analysis. Disaster Med Public Health Prep. 2020:1-10. doi:10.1017/dmp.2020.206CrossRefGoogle Scholar
Liang, F, Guan, P, Wu, W, et al. A review of documents prepared by international organizations about influenza pandemics, including the 2009 pandemic: a bibliometric analysis. BMC Infect Dis. 2018;18(1):383. doi: 10.1186/s12879-018-3286-3 CrossRefGoogle ScholarPubMed
World Health Organization (WHO). COVID-19 Weekly epidemiological update; 2022. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-february-2022. Accessed February 23, 2022.Google Scholar
World Health Organization (WHO). International health regulations. 3rd eds; 2016.Geneva: Switzerland.Google Scholar
Bell, JA, Nuzzo, JB. GHS Index: Advancing collective action and accountability amid global crisis; 2021. https://www.ghsindex.org/wp-content/uploads/2021/12/2021_GHSindexFullReport_Final.pdf. Accessed Fabruary 12, 2022.Google Scholar
Kandel, N, Chungong, S, Omaar, A, Xing, J. Health security capacities in the context of COVID-19 outbreak: an analysis of International health regulations annual report data from 182 countries. Lancet. 2020;395:1047-1053. doi: 10.1016/S0140-6736(20)30553-5 CrossRefGoogle ScholarPubMed
Blinken, AJ, Becerra, X. Strengthening global health security and reforming the International Health Regulations. JAMA. 2021;326(13):1255. doi: 10.1001/jama.2021.15611 CrossRefGoogle ScholarPubMed
Yamey, G, Gordon, R, Gray, GE. Pandemic vaccine trials in low- and middle-income countries and global health security. JAMA Netw Open. 2021;4(11):e2134455. doi: 10.1001/jamanetworkopen.2021.34455 CrossRefGoogle ScholarPubMed
United Nation Development Programme. New threats to human security in the anthropocene demanding greater solidarity; 2022. https://hdr.undp.org/sites/default/files/srhs2022.pdf. Accessed March 11, 2022Google Scholar
World Bank. World Bank country and lending groups. https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS. Accessed March 10, 2022Google Scholar
UNDP. Human development report: the next frontier. h=uman development and the anthropocene.; 2020. https://hdr.undp.org/en/content/human-development-report-2020. Accessed March 13, 2022.Google Scholar
World Population Review. Countries by population density 2022. https://worldpopulationreview.com/country-rankings/countries-by-density. Accessed March 8, 2022.Google Scholar
Center for Systems Science and Engineering (CSSE), Johns Hopkins University (JHU). COVID-19 dashboard by the CSSE at JHU.Google Scholar
Onder, G, Rezza, G, Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020. doi: 10.1001/jama.2020.4683 CrossRefGoogle Scholar
Rajgor, DD, Lee, MH, Archuleta, S, Bagdasarian, N, Quek, SC. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776-777. doi: 10.1016/S1473-3099(20)30244-9.CrossRefGoogle ScholarPubMed
Durmuş, V. Epidemic trends of COVID-19 in 10 countries compared with Turkey. Vacunas. 2021;22(1):10-19. doi: 10.1016/j.vacun.2020.08.003 CrossRefGoogle ScholarPubMed
Khalifa, BA Abbey, EJ, Ayeh, SK, et al. the Global Health Security Index is not predictive of vaccine rollout responses among OECD countries. Int J Infect Dis. 2021;113:7-11. doi: 10.1016/j.ijid.2021.09.034 CrossRefGoogle Scholar
Deb, P, Furceri, D, Ostry, J, Tawk, N. The economic effects of COVID-19 containment measures. IMF Work Pap. 2020;20(158). doi: 10.5089/9781513550251.001 Google Scholar
World Health Organization (WHO). Pandemic influenza preparedness in WHO Member States: report of a member states survey; 2019. https://apps.who.int/iris/handle/10665/325411. Accessed March 7, 2022.Google Scholar
Semenza, JC, Sewe, MO, Lindgren, E, et al. Systemic resilience to cross-border infectious disease threat events in Europe. Transbound Emerg Dis. 2019;66(5):1855-1863. doi: 10.1111/tbed.13211 CrossRefGoogle ScholarPubMed
Little, C, Alsen, M, Barlow, J, et al. The Impact of socioeconomic status on the clinical outcomes of COVID-19; a retrospective cohort study. J Community Health. 2021;46(4):794-802. doi: 10.1007/s10900-020-00944-3 CrossRefGoogle ScholarPubMed
Smiley Evans, T, Shi, Z, Boots, M, et al. Synergistic China – US ecological research is essential for global emerging infectious disease preparedness. Ecohealth. 2020;17(1):160-173. doi: 10.1007/s10393-020-01471-2 CrossRefGoogle ScholarPubMed
Durmuş, V. Is the country-level income an important factor to consider for COVID-19 control? An analysis of selected 100 countries. Int J Heal Gov. 2021;26(2):100-113. doi: 10.1108/IJHG-10-2020-0121 CrossRefGoogle Scholar
Sreedharan, J, Nair, SC, Muttappallymyalil, J, et al. Case fatality rates of COVID-19 across the globe: are the current draconian measures justified? Z Gesundh Wiss. 2022;30(11):2575-2583. doi: 10.1007/s10389-021-01491-4 CrossRefGoogle ScholarPubMed
Hellewell, J, Abbott, S, Gimma, A, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Heal. 2020;8(4):e488-e496. doi: 10.1016/S2214-109X(20)30074-7 CrossRefGoogle ScholarPubMed
Duan, Y, Shi, J, Wang, Z, Zhou, S, Jin, Y, Zheng, Z-J. Disparities in COVID-19 vaccination among low-, middle-, and high-income countries: the mediating role of vaccination policy. Vaccines. 2021;9(8):905. doi: 10.3390/vaccines9080905 CrossRefGoogle ScholarPubMed
Seale, H, Heywood, AE, Leask, J, et al. Examining Australian public perceptions and behaviors towards a future COVID-19 vaccine. BMC Infect Dis. 2021;21(1):120. doi: 10.1186/s12879-021-05833-1 CrossRefGoogle ScholarPubMed
Bubar, KM, Reinholt, K, Kissler, SM, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science. 2021;371(6532):916-921. doi: 10.1126/science.abe6959 CrossRefGoogle ScholarPubMed
Georgiou, MN. Is human development index a shield against COVID-19? SSRN Electron J. Published online 2021. doi:10.2139/ssrn.3834206CrossRefGoogle Scholar