Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T03:47:46.081Z Has data issue: false hasContentIssue false

Striatal brain volume linked to severity of substance use in high-risk incarcerated youth

Published online by Cambridge University Press:  13 May 2024

Nathaniel E. Anderson
The Mind Research Network, Albuquerque, NM, USA
J. Michael Maurer
The Mind Research Network, Albuquerque, NM, USA
David Stephenson
The Mind Research Network, Albuquerque, NM, USA
Keith Harenski
The Mind Research Network, Albuquerque, NM, USA
Michael Caldwell
Mendota Mental Health Institute, Madison, WI, USA Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
Greg Van Rybroek
Mendota Mental Health Institute, Madison, WI, USA Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
Kent A. Kiehl*
The Mind Research Network, Albuquerque, NM, USA Department of Psychology, University of New Mexico, Albuquerque, NM, USA
Corresponding author: K. A. Kiehl; Email:


Substance use disorders among juveniles are a major public health concern and are often intertwined with other psychosocial risk factors including antisocial behavior. Identifying etiological risks and mechanisms promoting substance use disorders remains a high priority for informing more focused interventions in high-risk populations. The present study examined brain gray matter structure in relation to substance use severity among n = 152 high-risk, incarcerated boys (aged 14–20). Substance use severity was positively associated with gray matter volume across several frontal/striatal brain regions including amygdala, pallidum, putamen, insula, and orbitofrontal cortex. Effects were apparent when using voxel-based-morphometric analysis, as well as in whole-brain, data-driven, network-based approaches (source-based morphometry). These findings support the hypothesis that elevated gray matter volume in striatal reward circuits may be an endogenous marker for vulnerability to severe substance use behaviors among youth.

Regular Article
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. Neuroimage, 11(6), 805821.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839851.CrossRefGoogle ScholarPubMed
Barrós-Loscertales, A., Garavan, H., Bustamante, J. C., Ventura-Campos, N., Llopis, J. J., Belloch, V., Parcet, M. A., & Ávila, C. (2011). Reduced striatal volume in cocaine-dependent patients. Neuroimage, 56(3), 10211026.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Robbins, T. W. (2012). Decision-making in the adolescent brain. Nature Neuroscience, 15(9), 11841191.CrossRefGoogle ScholarPubMed
Bu, L., Yu, D., Su, S., Ma, Y., Von Deneen, K. M., Luo, L., Zhai, J., Liu, B., Cheng, J., Guan, Y., Li, Y., Bi, Y., Xue, T., Lu, X., & Yuan, K. (2016). Functional connectivity abnormalities of brain regions with structural deficits in young adult male smokers. Frontiers in Human Neuroscience, 10, 494. CrossRefGoogle ScholarPubMed
Büchel, C., Peters, J., Banaschewski, T., Bokde, A. L. W., Bromberg, U., Conrod, P. J., Flor, H., Papadopoulos, D., Garavan, H., Gowland, P., Heinz, A., Walter, H., Ittermann, B., Mann, K., Martinot, J-L., Paillère-Martinot, M-L., Nees, F., Paus, T., Pausova, Z., Poustka, L., Rietschel, M., Robbins, T. W., Smolka, M. N., Gallinat, J., Schumann, G., Knutson, B., & IMAGEN consortium (2017). Blunted ventral striatal responses to anticipated rewards foreshadow problematic drug use in novelty-seeking adolescents. Nature Communications, 8(1), 111.CrossRefGoogle ScholarPubMed
CASA (2010). Behind Bars II: Substance abuse and America’s prison population. The National Center on Addiction and Substance Aubse at Columbia University. Google Scholar
Casey, B., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277.CrossRefGoogle ScholarPubMed
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., Chaarani, B., Mejia, M. H., Hagler, D. J. Jr., Daniela Cornejo, M., Sicat, C. S., Harms, M. P., Dosenbach, N. U. F., Rosenberg, M., Earl, E., Bartsch, H., Watts, R., Polimeni, J. R., Kuperman, J. M., Fair, D. A., & Dale, A. M. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354. CrossRefGoogle ScholarPubMed
Casey, B., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49(12), 11891201.Google ScholarPubMed
CBHSQ (2015). Behavioral health trends in the United States: Results from the 2014 national survey on drug use and health. Center for Behavioral Health Statistics and Quality. Google Scholar
Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biological Psychiatry, 57(9), 967974.CrossRefGoogle ScholarPubMed
Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. Neuroimage, 54(2), 13441354.CrossRefGoogle ScholarPubMed
Churchwell, J. C., Carey, P. D., Ferrett, H. L., Stein, D. J., & Yurgelun-Todd, D. A. (2012). Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Developmental Neuroscience, 34(4), 310317.CrossRefGoogle ScholarPubMed
Cochran, J. C., Mears, D. P., Bales, W. D., & Stewart, E. A. (2014). Does inmate behavior affect post-release offending? Investigating the misconduct-recidivism relationship among youth and adults. Justice Quarterly, 31(6), 10441073.CrossRefGoogle Scholar
Conrod, P. J., & Nikolaou, K. (2016). Annual research review: On the developmental neuropsychology of substance use disorders. Journal of Child Psychology and Psychiatry, 57(3), 371394.CrossRefGoogle ScholarPubMed
Cope, L. M., Martz, M. E., Hardee, J. E., Zucker, R. A., & Heitzeg, M. M. (2019). Reward activation in childhood predicts adolescent substance use initiation in a high-risk sample. Drug and Alcohol Dependence, 194, 318325. CrossRefGoogle Scholar
Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649658.CrossRefGoogle ScholarPubMed
Ersche, K. D., Jones, P. S., Williams, G. B., Turton, A. J., Robbins, T. W., & Bullmore, E. T. (2012). Abnormal brain structure implicated in stimulant drug addiction. Science, 335(6068), 601604.CrossRefGoogle ScholarPubMed
Ersche, K. D., Williams, G. B., Robbins, T. W., & Bullmore, E. T. (2013). Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Current Opinion in Neurobiology, 23(4), 615624.CrossRefGoogle ScholarPubMed
Fein, G., Greenstein, D., Cardenas, V. A., Cuzen, N. L., Fouche, J. P., Ferrett, H., Thomas, K., & Stein, D. J. (2013). Cortical and subcortical volumes in adolescents with alcohol dependence but without substance or psychiatric comorbidities. Psychiatry Research: Neuroimaging, 214(1), 18.CrossRefGoogle ScholarPubMed
Forth, A. E., Kosson, D. S., & Hare, R. D. (2003). Hare psychopathy checklist: Youth version (PCL: YV). Multi-Health Systems.Google Scholar
Franklin, T. R., Acton, P. D., Maldjian, J. A., Gray, J. D., Croft, J. R., Dackis, C. A., O’Brien, C. P., & Childress, A. R. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51(2), 134142.CrossRefGoogle ScholarPubMed
Galvan, A. (2010). Adolescent development of the reward system. Frontiers in Human Neuroscience, 6, 1018. Google Scholar
Giedd, J. N. (2008). The teen brain: Insights from neuroimaging. Journal of Adolescent Health, 42(4), 335343.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861863.CrossRefGoogle ScholarPubMed
Gilman, J. M., Kuster, J. K., Lee, S., Lee, M. J., Kim, B. W., Makris, N., van der Kouwe, A., Blood, A. J., & Breiter, H. C. (2014). Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. Journal of Neuroscience, 34(16), 55295538.CrossRefGoogle ScholarPubMed
Glaze, L. E., & Kaeble, D. (2014). Correctional populations in the United States, 2013. Bureau of Justice Statistics. Google Scholar
Henry, B. F. (2020). Adversity, mental health, and substance use disorders as predictors and mediators of rule violations in US prisons. Criminal Justice and Behavior, 47(3), 271289.CrossRefGoogle ScholarPubMed
Ide, J. S., Li, H.-T., Chen, Y., Le, T. M., Li, C. S., Zhornitsky, S., & Li, C.-S. R. (2020). Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: An exploratory voxel-based morphometry study of the ABCD project data. Neuroimage, 220, 117085. CrossRefGoogle ScholarPubMed
Infante, M. A., Eberson, S. C., Zhang, Y., Brumback, T., Brown, S. A., Colrain, I. M., Baker, F. C., Clark, D. B., De Bellis, M. D., Goldston, D., Nagel, B. J., Nooner, K. B., Zhao, Q., Pohl, K. M., Sullivan, E. V., Pfefferbaum, A., Tapert, S. F., & Thompson, W. K. (2022). Adolescent binge drinking is associated with accelerated decline of gray matter volume. Cerebral Cortex, 32(12), 26112620.CrossRefGoogle ScholarPubMed
Jaworska, N., Cox, S. M., Tippler, M., Castellanos-Ryan, N., Benkelfat, C., Parent, S., Dagher, A., Vitaro, F., Boivin, M., Pihl, R. O., Côté, S. M., Tremblay, R. E., Séguin, J. R., & Leyton, M. (2020). Extra-striatal D 2/3 receptor availability in youth at risk for addiction. Neuropsychopharmacology, 45(9), 14981505.CrossRefGoogle ScholarPubMed
Jernigan, T. L., Gamst, A. C., Archibald, S. L., Fennema-Notestine, C., Mindt, M. R., Marcotte, T. L., Heaton, R. K., Ellis, R. J., & Grant, I. (2005). Effects of methamphetamine dependence and HIV infection on cerebral morphology. American Journal of Psychiatry, 162(8), 14611472.CrossRefGoogle ScholarPubMed
Kaag, A. M., Schulte, M. H. J., Jansen, J. M., Van Wingen, G., Homberg, J., Van Den Brink, W., Wiers, R. W., Schmaal, L., Goudriaan, A. E., & Reneman, L. (2018). The relation between gray matter volume and the use of alcohol, tobacco, cocaine and cannabis in male polysubstance users. Drug and Alcohol Dependence, 187, 186194. CrossRefGoogle ScholarPubMed
Kelley, A. E., Schochet, T., & Landry, C. F. (2004). Risk taking and novelty seeking in adolescence: Introduction to part I. Annals of the New York Academy of Sciences, 1021(1), 2732.CrossRefGoogle ScholarPubMed
Kendler, K. S., Ohlsson, H., Maes, H. H., Sundquist, K., Lichtenstein, P., & Sundquist, J. (2015). A population-based swedish twin and sibling study of cannabis, stimulant and sedative abuse in men. Drug and Alcohol Dependence, 149, 4954. CrossRefGoogle ScholarPubMed
Kiehl, K. A., Anderson, N. E., Aharoni, E., Maurer, J. M., Harenski, K. A., Rao, V., Claus, E. D., Harenski, C., Koenigs, M., Decety, J., Kosson, D., Wager, T. D., Calhoun, V. D., & Steele, V. R. (2018). Age of gray matters: Neuroprediction of recidivism. NeuroImage: Clinical, 19, 813823. CrossRefGoogle ScholarPubMed
King, N., Crawford, S., Wenden, F., Moss, N., & Wade, D. (1995). The rivermead post concussion symptoms questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. Journal of Neurology, 242(9), 587592.CrossRefGoogle ScholarPubMed
Lees, B., Garcia, A. M., Debenham, J., Kirkland, A. E., Bryant, B. E., Mewton, L., & Squeglia, L. M. (2021). Promising vulnerability markers of substance use and misuse: A review of human neurobehavioral studies. Neuropharmacology, 187, 108500. CrossRefGoogle ScholarPubMed
Lisdahl, K. M., Tamm, L., Epstein, J. N., Jernigan, T., Molina, B. S. G., Hinshaw, S. P., Swanson, J. M., Newman, E., Kelly, C., Bjork, J. M., & MTA Neuroimaging Group (2016). The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults. Drug and Alcohol Dependence, 161, 135146. CrossRefGoogle ScholarPubMed
Lorenzetti, V., Lubman, D. I., Whittle, S., Solowij, N., & Yücel, M. (2010). Structural MRI findings in long-term cannabis users: What do we know? Substance Use & Misuse, 45(11), 17871808.CrossRefGoogle ScholarPubMed
Luna, B., & Sweeney, J. A. (2004). The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021(1), 296309.CrossRefGoogle ScholarPubMed
Mackey, S., Allgaier, N., Chaarani, B., Spechler, P., Orr, C., Bunn, J., Allen, N. B., Alia-Klein, N., Batalla, A., Blaine, S., Brooks, S., Caparelli, E., Chye, Y. Y., Cousijn, J., Dagher, A., Desrivieres, S., Feldstein-Ewing, S., Foxe, J. J., Goldstein, R. Z., Goudriaan, A. E., Heitzeg, M. M., Hester, R., Hutchison, K., Korucuoglu, O., Li, C.-S. R., London, E., Lorenzetti, V., Luijten, M., Martin-Santos, R., May, A., Momenan, R., Morales, A., Paulus, M. P., Pearlson, G., Rousseau, M.-E., Salmeron, B. J., Schluter, Rée, Schmaal, L., Schumann, G., Sjoerds, Z., Stein, D. J., Stein, E. A., Sinha, R., Solowij, N., Tapert, S., Uhlmann, A., Veltman, D., van Holst, R., Whittle, S., Wiers, R., Wright, M. J., Yücel, M., Zhang, S., Yurgelun-Todd, D., Hibar, D. P., Jahanshad, N., Evans, A., Thompson, P. M., Glahn, D. C., Conrod, P., Garavan, H., & the ENIGMA Addiction Working Group (2019). Mega-analysis of gray matter volume in substance dependence: General and substance-specific regional effects. American Journal of Psychiatry, 176(2), 119128.CrossRefGoogle ScholarPubMed
Makris, N., Oscar-Berman, M., Jaffin, S. K., Hodge, S. M., Kennedy, D. N., Caviness, V. S., Marinkovic, K., Breiter, H. C., Gasic, G. P., & Harris, G. J. (2008). Decreased volume of the brain reward system in alcoholism. Biological Psychiatry, 64(3), 192202.CrossRefGoogle ScholarPubMed
Mason, W. A., & Windle, M. (2002). Reciprocal relations between adolescent substance use and delinquency: A longitudinal latent variable analysis. Journal of Abnormal Psychology, 111(1), 6376. CrossRefGoogle ScholarPubMed
McClelland, G. M., Elkington, K. S., Teplin, L. A., & Abram, K. M. (2004). Multiple substance use disorders in juvenile detainees. Journal of the American Academy of Child & Adolescent Psychiatry, 43(10), 12151224.CrossRefGoogle ScholarPubMed
McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., Pettinati, H., & Argeriou, M. (1992). The fifth edition of the addiction severity index. Journal of Substance Abuse Treatment, 9(3), 199213.CrossRefGoogle ScholarPubMed
Merikangas, K. R., & McClair, V. L. (2012). Epidemiology of substance use disorders. Human Genetics, 131(6), 779789.CrossRefGoogle ScholarPubMed
Mumola, C. J., & Karberg, J. C. (2006). Drug use and dependence, state and federal prisoners, 2004. Bureau of Justice Statistics: Special Report. CrossRefGoogle Scholar
Paulus, M. P. (2022). Neural substrates of substance use disorders. Current Opinion in Neurology, 35(4), 460466.CrossRefGoogle ScholarPubMed
Pearson, F. S., & Lipton, D. S. (1999). A meta-analytic review of the effectiveness of corrections-based treatments for drug abuse. The Prison Journal, 79(4), 384410. CrossRefGoogle Scholar
Rhee, S. H., Hewitt, J. K., Young, S. E., Corley, R. P., Crowley, T. J., & Stallings, M. C. (2003). Genetic and environmental influences on substance initiation, use, and problem use in adolescents. Archives of General Psychiatry, 60(12), 12561264.CrossRefGoogle ScholarPubMed
Robert, G. H., Luo, Q., Yu, T., Chu, C., Ing, A., Jia, T., Papadopoulos Orfanos, D., Burke-Quinlan, E., Desrivières, S., Ruggeri, B., Spechler, P., Chaarani, B., Tay, N., Banaschewski, T., Bokde, A. L. W., Bromberg, U., Flor, H., Frouin, V., Gowland, P., Heinz, A., Ittermann, B., Martinot, J.-L., Paillère Martinot, M.-L., Nees, F., Poustka, L., Smolka, M. N., Vetter, N. C., Walter, H., Whelan, R., Conrod, P., Barker, T., Garavan, H., Schumann, G., & for the IMAGEN Consortium (2020). Association of gray matter and personality development with increased drunkenness frequency during adolescence. JAMA Psychiatry, 77(4), 409419.CrossRefGoogle ScholarPubMed
Sajous-Turner, A., Anderson, N. E., Widdows, M., Nyalakanti, P., Harenski, K., Harenski, C., Koenigs, M., Decety, J., & Kiehl, K. A. (2020). Aberrant brain gray matter in murderers. Brain Imaging and Behavior, 14(5), 20502061.CrossRefGoogle ScholarPubMed
Schiffer, B., Müller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., Gizewski, E. R., & Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 10391049.CrossRefGoogle ScholarPubMed
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309315.CrossRefGoogle ScholarPubMed
Teplin, L. A., Abram, K. M., McClelland, G. M., Dulcan, M. K., & Mericle, A. A. (2002). Psychiatric disorders in youth in juvenile detention. Archives of General Psychiatry, 59(12), 11331143.CrossRefGoogle ScholarPubMed
Tschernegg, M., Pletzer, B., Schwartenbeck, P., Ludersdorfer, P., Hoffmann, U., & Kronbichler, M. (2015). Impulsivity relates to striatal gray matter volumes in humans: Evidence from a delay discounting paradigm. Frontiers in Human Neuroscience, 9, 384. CrossRefGoogle ScholarPubMed
Verdejo-Garcia, A., & Albein-Urios, N. (2020). Impulsivity traits and neurocognitive mechanisms conferring vulnerability to substance use disorders. Neuropharmacology, 183(108402), 19. Google ScholarPubMed
Volkow, N. D., Koob, G. F., Croyle, R. T., Bianchi, D. W., Gordon, J. A., Koroshetz, W. J., Pérez-Stable, E. J., Riley, W. T., Bloch, M. H., Conway, K., Deeds, B. G., Dowling, G. J., Grant, S., Howlett, K. D., Matochik, J. A., Morgan, G. D., Murray, M. M., Noronha, A., Spong, C. Y., Wargo, E. M., Warren, K. R., & Weiss, S. R. B. (2018). The conception of the ABCD study: From substance use to a broad NIH collaboration. Developmental Cognitive Neuroscience, 32, 47. CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays, 32(9), 748755.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G.-J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of The National Academy of Sciences of The United States of America, 108(37), 1503715042.CrossRefGoogle ScholarPubMed
Wager, T. D., Keller, M. C., Lacey, S. C., & Jonides, J. (2005). Increased sensitivity in neuroimaging analyses using robust regression. Neuroimage, 26(1), 99113.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler adult intelligence scale. Psychological Corporation.Google Scholar
Wechsler, D. (2003). Wechlser intelligence scale for children—Fourth edition. Psychological Corporation.Google Scholar
Weiland, B. J., Korycinski, S. T., Soules, M., Zubieta, J.-K., Zucker, R. A., & Heitzeg, M. M. (2014). Substance abuse risk in emerging adults associated with smaller frontal gray matter volumes and higher externalizing behaviors. Drug and Alcohol Dependence, 137, 6875. CrossRefGoogle ScholarPubMed
Weiland, B. J., Zucker, R. A., Zubieta, J. K., & Heitzeg, M. M. (2017). Striatal dopaminergic reward response relates to age of first drunkenness and feedback response in at-risk youth. Addiction Biology, 22(2), 502512.CrossRefGoogle ScholarPubMed
Welty, L. J., Hershfield, J. A., Abram, K. M., Han, H., Byck, G. R., & Teplin, L. A. (2017). Trajectories of substance use disorder in youth after detention: A 12-year longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 56(2), 140148.CrossRefGoogle ScholarPubMed
Xu, L., Groth, K. M., Pearlson, G., Schretlen, D. J., & Calhoun, V. D. (2009). Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping, 30(3), 711724.CrossRefGoogle ScholarPubMed
Supplementary material: File

Anderson et al. supplementary material

Anderson et al. supplementary material
Download Anderson et al. supplementary material(File)
File 254.5 KB