Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-mcrbk Total loading time: 1.468 Render date: 2022-06-29T13:42:29.858Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation

Published online by Cambridge University Press:  21 October 2011

Theodore P. Beauchaine*
Affiliation:
Washington State University
Emily Neuhaus
Affiliation:
University of Washington
Maureen Zalewski
Affiliation:
University of Washington
Sheila E. Crowell
Affiliation:
University of Utah
Natalia Potapova
Affiliation:
Washington State University
*
Address correspondence and reprint requests to: Theodore P. Beauchaine, Department of Psychology, Washington State University, Pullman, WA 99164-4820; E-mail: ted.beauchaine@wsu.edu.

Abstract

The term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic–hypothalamic–pituitary–adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic–hypothalamic–pituitary–adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, E. D., & Jacobs, B. L. (1987). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II. Adaptation to chronically presented stressful stimuli. Journal of Neuroscience, 7, 28442848.CrossRefGoogle ScholarPubMed
Ackerman, J. P., Riggins, T., & Black, M. M. (2010). A review of the effects of prenatal cocaine exposure among school-aged children. Pediatrics, 125, 554565.CrossRefGoogle ScholarPubMed
Adam, E. K., Sutton, J. M., Doane, L. D., & Mineka, S. (2008). Incorporating hypothalamic–pituitary–adrenal axis measures into preventive interventions for adolescent depression: Are we there yet? Development and Psychopathology, 20, 9751001.CrossRefGoogle ScholarPubMed
Adamec, R., Holmes, A., & Blundell, J. (2008). Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: Sex, serotonin and other factors—Relevance to PTSD. Neuroscience and Biobehavioral Reviews, 32, 12871292.CrossRefGoogle ScholarPubMed
Adell, A., Garcia-Marquez, C., Armario, A., & Gelpi, E. (1988). Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. Journal of Neurochemistry, 50, 16781681.CrossRefGoogle ScholarPubMed
Adell, A., Trullas, R., & Gelpi, I. (1988). Time course of changes in serotonin and noradrenaline in rat brain after predictable or unpredictable shock. Brain Research, 459, 5459.CrossRefGoogle ScholarPubMed
Alonso, S. J., Navarro, E., & Rodriguez, M. (1994). Permanent dopaminergic alterations in the n. accumbens after prenatal stress. Pharmacology, Biochemistry, and Behavior, 49, 353358.CrossRefGoogle Scholar
Amstadter, A. B., Nugent, N. R., & Koenen, K. C. (2009). Genetics of PTSD: Fear conditioning as a model for future research. Psychiatric Annals, 39, 358367.CrossRefGoogle ScholarPubMed
Anisman, H., Du, L., Palkovits, M., Faludi, G., Kovacs, G. G., Szontagh-Kishazi, P., et al. (2008). Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. Journal of Psychiatry and Neuroscience, 33, 131141.Google ScholarPubMed
Anguelova, M., Benkelfat, C., & Turecki, G. (2003). A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Molecular Psychiatry, 8, 574591.CrossRefGoogle ScholarPubMed
Anstrom, K. K., Miczek, K. A., & Budygin, E. A. (2009). Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience, 161, 312.CrossRefGoogle ScholarPubMed
Anstrom, K. K., & Woodward, D. J. (2005). Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology, 30, 18321840.CrossRefGoogle ScholarPubMed
Arango, V., Ernsberger, P., Marzuk, P. M., Chen, J.-S., Tierney, H., Stanley, M., et al. (1990). Autoradiographic demonstration of increased serotonin 5-HT2 and β-adrenergic receptor binding sites in the brain of suicide victims. Archives of General Psychiatry, 47, 10381047.CrossRefGoogle ScholarPubMed
Arango, V., Underwood, M. D., & Mann, J. J. (2002). Serotonin brain circuits involved in major depression and suicide. Progress in Brain Research, 136, 443453.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422.CrossRefGoogle ScholarPubMed
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Iba, M., Clayton, E., Rajkowski, J., & Cohen, J. (2007). The locus coeruleus and regulation of behavioral flexibility and attention: Clinical implications. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 196235). New York: Cambridge University Press.CrossRefGoogle Scholar
Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46, 13091320.CrossRefGoogle ScholarPubMed
Atkinson, L., Leung, E., Goldberg, S., Benoit, D., Poulton, L., Myhal, N., et al. (2009). Attachment and selective attention: Disorganization and emotional Stroop reaction time. Development and Psychopathology, 21, 99126.CrossRefGoogle ScholarPubMed
Audet, M. C., & Anisman, H. (2010). Neuroendocrine and neurochemical impact of aggressive social interactions in submissive and dominant mice: Implications for stress-related disorders. International Journal of Neuropsychopharmacology, 13, 361372.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., Van IJzendoorn, M. H., Mesman, J., Alink, L. R. A., & Juffer, F. (2008). Effects of an attachment-based intervention on daily cortisol moderated by dopamine receptor D4: A randomized control trial on 1- to 3-year-olds screened for externalizing behavior. Development and Psychopathology, 20, 805820.CrossRefGoogle ScholarPubMed
Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 10831152.CrossRefGoogle ScholarPubMed
Bayart, F., Hayashi, K. T., Faull, K. F., Barchas, J. D., & Levine, S. (1990). Influence of maternal proximity on behavioral and physiological responses to separation in infant rhesus monkeys. Behavioral Neuroscience, 104, 98107.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Hinshaw, S. P., & Gatzke-Kopp, L. M. (2008). Genetic and environmental influences on behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 5892). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Hinshaw, S. P., & Pang, K. (2010). Comorbidity of attention-deficit/hyperactivity disorder and early-onset conduct disorder: Biological, environmental, and developmental mechanisms. Clinical Psychology Science and Practice, 17, 327336.CrossRefGoogle Scholar
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. M. (2009). Multifinality in the development of personality disorders: A Biology × Sex × Environment interaction model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., & Neuhaus, E. (2008). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 129156). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20, 745774.CrossRefGoogle ScholarPubMed
Benes, F. M. (2006). The development of the prefrontal cortex: The maturation of neurotransmitter systems and their interactions. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 2, 2nd ed., pp. 216258). Hoboken, NJ: Wiley.Google Scholar
Bergamasco, E., Macchi, C., Facello, P., Badino, R., Odore, S., Pagliasso, C., et al. (2005). Effects of brief maternal separation in kids on neurohormonal and electroencephalographic parameters. Applied Animal Behavior Science, 93, 3952.CrossRefGoogle Scholar
Berger, M. A., Barros, V. G., Sarchi, M. I., Tarazi, F. I., & Antonelli, M. C. (2002). Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochemical Research, 27, 15251533.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2003). Comparing the emotional brain of humans and other animals. In Davidson, R. J., Scherer, K., & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 2551). New York: Oxford University Press.Google Scholar
Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and Psychopathology, 20, 899911.CrossRefGoogle ScholarPubMed
Brake, W. G., Zhang, T. Y., Dioro, J., Meaney, M. J., & Gratton, A. (2004). Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. European Journal of Neuroscience, 19, 18631874.CrossRefGoogle ScholarPubMed
Braun, K., Lange, E., Metzger, M., & Poeggel, G. (2000). Maternal separation followed by early social deprivation affects the development of monoaminergic fiber systems in the medial prefrontal cortex of octodon degus. Neuroscience, 95, 309318.CrossRefGoogle ScholarPubMed
Brezo, J., Bureau, A., Merette, C., Jomphe, V., Barker, E. D., Vitaro, F., et al. (2010). Differ-ences and similarities in the serotonergic diathesis for suicide attempts and mood disorders: A 22-year longitudinal gene–environment study. Molecular Psychiatry, 15, 831843.CrossRefGoogle Scholar
Brindley, D. N., & Rolland, Y. (1989). Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Clinical Science, 77, 453461.CrossRefGoogle ScholarPubMed
Britton, K. T., Segal, D. S., Kuczenski, R., & Hauger, R. (1992). Dissociation between in vivo hippocampal norepinephrine response and behavioral/neuroendocrine responses to noise stress in rats. Brain Research, 574, 125130.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., et al. (2010). Dopaminergic network differences in human impulsivity. Science, 329, 532.CrossRefGoogle ScholarPubMed
Buffalari, D. M., & Grace, A. A. (2009). Chronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons. International Journal of Neuropsychopharmacology, 12, 95107.CrossRefGoogle ScholarPubMed
Bugental, D. B., Martorell, G. A., & Barraza, V. (2003). The hormonal costs of subtle forms of infant maltreatment. Hormones and Behavior, 43, 237244.CrossRefGoogle ScholarPubMed
Cabib, S., & Puglisi-Allegra, S. (1996). Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 128, 331342.CrossRefGoogle ScholarPubMed
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371, 702704.CrossRefGoogle ScholarPubMed
Carboni, E., Barros, V. G., Ibba, M., Silvagni, A., Mura, C., & Antonelli, M. C. (2010). Prenatal restraint stress: An in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience, 168, 156166.CrossRefGoogle Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Cassano, W. J., & D'mello, A. P. (2001). Acute stress-induced facilitation of the hypothalamic–pituitary–adrenal axis: Evidence for the roles of stressor duration and serotonin. Neuroendocrinology, 74, 167177.CrossRefGoogle ScholarPubMed
Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3, 617628.CrossRefGoogle ScholarPubMed
Cazakoff, B. N., Johnson, K. J., & Howland, J. G. (2010). Converging effects of acute stress on spatial and recognition memory in rodents: A review of recent behavioural and pharmacological findings. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34, 733741.CrossRefGoogle ScholarPubMed
Cecchi, M., Khoshbouei, H., Javors, M., & Morilak, D. A. (2002). Modulatory effects of norepinephrine in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine responses to acute stress. Neuroscience, 112, 1321.CrossRefGoogle ScholarPubMed
Cecchi, M., Khoshbouei, H., & Morilak, D. A. (2002). Modulatory effects of norepinephrine, acting on α1-receptors in the central nucleus of the amygdala, on behavioral and neuro-endocrine responses to acute immobilization stress. Neuropharmacology, 43, 11391147.CrossRefGoogle Scholar
Chalmers, D. T., Lopez, J. F., Vasquez, D. M., Akil, H., & Watson, S. J. (1994). Regulation of hippocampal 5-HT[1A] receptor gene expression by dexamethasone. Neuropsychopharmacology, 10, 215222.CrossRefGoogle Scholar
Chaouloff, F. (2000). Serotonin, stress and corticoids. Journal of Psychopharmacology, 14, 139151.CrossRefGoogle ScholarPubMed
Charney, D. S. (2004). Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. American Journal of Psychiatry, 161, 195216.CrossRefGoogle ScholarPubMed
Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21, 3137.CrossRefGoogle Scholar
Christianson, J. P., Ragole, T., Amat, J., Greenwood, B. N., Strong, P. V., Paul, E. D., et al. (2010). 5-Hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biological Psychiatry, 67, 339345.CrossRefGoogle ScholarPubMed
Cloninger, C. R. (1986). A unified biosocial theory of personality and its role in the development of anxiety states. Psychiatric Developments, 4, 167226.Google ScholarPubMed
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.CrossRefGoogle ScholarPubMed
Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.CrossRefGoogle ScholarPubMed
Cloninger, C. R., Svrakic, N. M., & Svrakic, D. M. (1997). Role of personality self-organization in development of mental order and disorder. Development and Psychopathology, 9, 881906.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Gunnar, M. R. (Eds.). (2008). Integrating biological measures into the design and evaluation of preventive interventions. Development and Psychopathology, 20, 737743.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.Google ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (in press). Neuroendocrine regulation and emotional adaptation in the context of child maltreatment. Monographs of the Society for Research in Child Development.Google Scholar
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early abuse on internalizing problems and diurnal cortisol activity in school-aged children. Child Development, 245, 252269.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., Sturge-Apple, M., & Toth, S. L. (2010). Interaction of child maltreatment and 5-HTT polymorphisms: Suicidal ideation among children from low-SES backgrounds. Journal of Pediatric Psychology, 35, 536546.CrossRefGoogle ScholarPubMed
Cole, P. M., Martin, S. E., & Dennis, T. A. (2004). Emotion regulation as a scientific construct: Methodological challenges and directions for child development research. Child Development, 75, 317333.CrossRefGoogle ScholarPubMed
Compan, V., Zhou, M., Grailhe, R., Gazzara, R. A., Martin, R., Gingrich, J., et al. (2004). Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. Journal of Neuroscience, 24, 412419.CrossRefGoogle ScholarPubMed
Conrad, C. D. (2008). Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Reviews in the Neurosciences, 19, 395412.CrossRefGoogle ScholarPubMed
Costa, R. J., Smith, A. H., Oliver, S. J., Walters, R., Maassen, N., Bilzon, J. L., et al. (2010). The effects of two nights of sleep deprivation with or without energy restriction on immune indices at rest and in response to cold exposure. European Journal of Applied Physiology, 109, 417428.CrossRefGoogle ScholarPubMed
Corr, P. (2004). Reinforcement sensitivity theory and personality. Neuroscience and Biobehavioral Reviews, 28, 317332.CrossRefGoogle Scholar
Covington, H. E., & Miczek, K. A. (2005). Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: Dissociation from corticosterone activation. Psychopharmacology, 183, 331340.CrossRefGoogle Scholar
Crespi, F., Wright, I. K., & Möbius, C. (1992). Isolation rearing of rats alters release of 5-hydroxytryptamine and dopamine in the frontal cortex: An in vivo electrochemical study. Experimental Brain Research, 88, 495501.CrossRefGoogle Scholar
Crowell, S. E., Beauchaine, T. P., & Linehan, M. (2009). A biosocial developmental model of borderline personality: Elaborating and extending Linehan's theory. Psychological Bulletin, 135, 495510.CrossRefGoogle ScholarPubMed
Crowell, S. E., Beauchaine, T. P., McCauley, E., Smith, C., Vasilev, C., & Stevens, A. L. (2008). Parent–child interactions, peripheral serotonin, and intentional self-injury in adolescents. Journal of Consulting and Clinical Psychology, 76, 1521.CrossRefGoogle Scholar
Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S. J., Theobald, D. E. H., Lääne, K., et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 12671270.CrossRefGoogle ScholarPubMed
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591594.CrossRefGoogle ScholarPubMed
Davies, M., Astrachan, D., Kehne, J., Commissaris, R., & Gallager, D. (1984). Catecholamine modulation of sensorimotor reactivity measured with acoustic startle. In Usdin, E., Carlsson, A., Dahlström, A., & Engel, J. (Eds.), Catecholamines: Part B: Neuropharmacology and central nervous system—Theoretical aspects (pp. 245258). New York: Alan R. Liss.Google Scholar
Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775803.CrossRefGoogle ScholarPubMed
Day, T. A. (2005). Defining stress as a prelude to mapping its neurocircuitry: No help from allostasis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 11951200.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology part I: Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Lefter, L., Trickett, P. K., & Putnam, F. W. Jr. (1994). Urinary catecholamine excretion in sexually abused girls. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 320327.CrossRefGoogle ScholarPubMed
Del Arco, A., & Mora, F. (2008). Prefrontal cortex–nucleus accumbens interaction: In vivo modulation by dopamine and in the prefrontal cortex. Pharmacology, Biochemistry, and Behavior, 90, 226235.CrossRefGoogle ScholarPubMed
DeLong, M. R. (2000). The basal ganglia. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (4th ed., pp. 853867). New York: McGraw–Hill.Google Scholar
Depue, R. A., & Collins, P. F. (2001). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491517.Google Scholar
Detke, M. J., Rickels, M., & Lucki, I. (1995). Active behavioras in the rat forced swimming test differentially produced by setotonergic and noradrenergic antidepressants. Psychopharmacology, 121, 6672.CrossRefGoogle ScholarPubMed
Deutch, A. Y., Goldstein, M., & Roth, R. H. (1986). Activation of the locus coeruleus induced by selective stimulation of the ventral tegmental area. Brain Research, 363, 307314.CrossRefGoogle ScholarPubMed
Dillion, D. G., Holmes, A. J., Birk, J. L., Brooks, N., Lyons-Ruth, K., & Pizzagalli, D. A. (2009). Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biological Psychiatry, 66, 206213.CrossRefGoogle Scholar
Djavadian, R. L. (2004). Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals. Acta Neurobiologiae Experimentalis, 64, 189200.Google ScholarPubMed
Doherty, M. D., & Gratton, A. (1996). Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: An electrochemical study in freely-behaving rats. Brain Research, 715, 8697.CrossRefGoogle ScholarPubMed
Douglas, A. J. (2005). Central noradrenergic mechanisms underlying acute stress responses of the hypothalamic–pituitary–adrenal axis: Adaptations through pregnancy and lactation. Stress, 8, 518.CrossRefGoogle Scholar
Dozier, M., Peloso, E., Lewis, E., Laurenceau, J.-P., & Levine, S. (2008). Effects of attachment-based intervention on the cortisol production of infants and toddlers in foster care. Development and Psychopathology, 20, 845859.CrossRefGoogle ScholarPubMed
Dremencov, E., el Mansari, M., & Blier, P. (2009). Brain norepinephrine system as a target for antidepressant and mood stabilizing medications. Current Drug Targets, 10, 10611068.CrossRefGoogle ScholarPubMed
Duman, R. S., & Newton, S. S. (2007). Regulation of gene transcription in the central nervous system by norepinephrine. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 95118). New York: Cambridge University Press.CrossRefGoogle Scholar
Dunlop, B. W., & Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry, 64, 327337.CrossRefGoogle ScholarPubMed
Durston, S. (2003). A review of the biological bases of ADHD: What have we learned from neuroimaging studies? Mental Retardation and Developmental Disabilities Research Reviews, 9, 184195.CrossRefGoogle Scholar
Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I.-M., Yang, Y., et al. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53, 871878.CrossRefGoogle ScholarPubMed
Eells, J. B., Misler, J. A., & Nikodem, V. M. (2006). Early postnatal isolation reduces dopamine levels, elevates dopamine turnover and specifically disrupts prepulse inhibition in Nerr1-null heterozygous mice. Neuroscience, 140, 11171126.CrossRefGoogle ScholarPubMed
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169200.CrossRefGoogle Scholar
Engert, V., Joober, R., Meaney, M. J., Hellhammer, D. H., & Pruessner, J. C. (2009). Behavioral response to methylphenidate challenge: Influence of early life parental care. Developmental Psychobiology, 51, 408416.CrossRefGoogle ScholarPubMed
Ernst, M., Moolchan, E. T., & Robinson, M. L. (2001). Behavioral and neural consequences of prenatal exposure to nicotine. Journal of American Academy of Child & Adolescent Psychiatry, 40, 630641.CrossRefGoogle ScholarPubMed
Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146, 348361.CrossRefGoogle ScholarPubMed
Fan, J., Hof, P. R., Guise, K. G., Fossella, J. A., & Posner, M. I. (2008). The functional integration of the anterior cingulate cortex during conflict processing. Cerebral Cortex, 18, 796805.CrossRefGoogle ScholarPubMed
Farrington, D. P., & Welsh, B. C. (1999). Delinquency prevention using family-based interventions. Children and Society, 13, 287303.3.0.CO;2-Z>CrossRefGoogle Scholar
Fergusson, D. M., Horwood, L. J., & Lynskey, M. T. (1993). Maternal smoking before and after pregnancy: Effects on behavioral outcomes in middle childhood. Pediatrics, 92, 815822.Google ScholarPubMed
Firk, C., & Markus, C. R. (2007). Review: Serotonin by stress interaction: A susceptibility factor for the development of depression? Journal of Psychopharmacology, 21, 538544.CrossRefGoogle Scholar
Fisher, P. A., & Stoolmiller, M. (2008). Intervention effects on foster parent stress: Associations with child cortisol levels. Development and Psychopathology, 20, 10031021.CrossRefGoogle ScholarPubMed
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905.CrossRefGoogle ScholarPubMed
Fontenot, M. B., Kaplan, J. R., Manuck, S. B., Arango, V., & Mann, J. J. (1995). Long-term effects of chronic social stress on serotonergic indices in the prefrontal cortex of adult male cynomolgus macaques. Brain Research, 705, 105108.CrossRefGoogle ScholarPubMed
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to under-standing child and adolescent depression? Development and Psychopathology, 17, 827850.CrossRefGoogle Scholar
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166, 6473.CrossRefGoogle ScholarPubMed
Forbes, E. E., Ryan, N. D., Phillips, M. L., Manuck, S.B., Worthman, C. M., Moyles, D. L., et al. (2010). Healthy adolescents' neural response to reward: Associations with puberty, positive affect, and depressive symptoms. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 162172.Google ScholarPubMed
Fowles, D. C. (1980). The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal responding, and psychophysiology. Psychophysiology, 17, 87104.CrossRefGoogle Scholar
Frank, D. A., Augustyn, M., Knight, W. G., Pell, T., & Zuckerman, B. (2001). Growth, development, and behavior in early childhood following prenatal cocaine exposure. Journal of the American Medical Association, 285, 16131625.CrossRefGoogle ScholarPubMed
Franko, K. L., Forhead, A. J., & Fowden, A. L. (2010). Differential effects of prenatal stress and glucocorticoid administration on postnatal growth and glucose metabolism in rats. Journal of Endocrinology, 204, 319329.CrossRefGoogle ScholarPubMed
Friedman, M. J., Jalowiec, J., McHugo, G., Wang, S., & McDonagh, A., (2007). Adult sexual abuse is associated with elevated neurohormone levels among women with PTSD due to childhood sexual abuse. Journal of Traumatic Stress, 20, 611617.CrossRefGoogle ScholarPubMed
Fryer, S. L., Crocker, N. A., & Mattson, S. N. (2008). Exposure to teratogenic agents. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 180207). Hoboken, NJ: Wiley.Google Scholar
Fulford, A. J., & Marsden, C. A. (1998). Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. Journal of Neurochemistry, 70, 384390.CrossRefGoogle ScholarPubMed
Furmark, T., Appel, L., Henningsson, S., Ahs, F., Faria, V., Linnman, C., et al. (2008). A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. Journal of Neuroscience, 28, 1306613074.CrossRefGoogle ScholarPubMed
Fuster, J. M. (2008). The prefrontal cortex (4th ed.). San Diego, CA: Academic Press.Google Scholar
Gardner, K. L., Hale, M. W., Lightman, S. L., & Plotsky, P. M. (2009). Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression. Brain Research, 1305, 4763.CrossRefGoogle ScholarPubMed
Gardner, K. L., Thrivkraman, K. V., Lightman, S. L., Lightman, P. M., & Lowry, C. A. (2005). Early life experience alters behavior during social defeat: Focus on serotonergic systems. Neuroscience, 136, 181191.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L., & Beauchaine, T. P. (2007a). Central nervous system substrates of impulsivity: Implications for the development of ADHD and conduct disorder. In Coch, D., Dawson, G., & Fischer, K. W. (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 239263). New York: Guilford Press.Google Scholar
Gatzke-Kopp, L. M. (2011). The canary in the coalmine: Sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience and Biobehavioral Reviews, 35, 794803.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M, & Beauchaine, T. P. (2007b). Direct and passive prenatal nicotine exposure and the development of externalizing psychopathology. Child Psychiatry and Human Development, 38, 255269.CrossRefGoogle Scholar
Gatzke-Kopp, L. M., Beauchaine, T. P., Shannon, K. E., Chipman-Chacon, J., Fleming, A. P., Crowell, S. E., et al. (2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118, 203213.CrossRefGoogle ScholarPubMed
Gavrilovic, L., Spasojevic, N., & Dronjak, S. (2010). Chronic individual housing-induced stress decreased expression of catecholamine biosynthetic enzyme genes and proteins in spleen of adult rats. Neuroimmunomodulation, 17, 265269.CrossRefGoogle ScholarPubMed
Geracioti, T. D. Jr., Baker, D. G., Ekhator, N. N., West, S. A., Hill, K. K., Bruce, A. B., et al. (2001). CSF norepinephrine concentrations in posttraumatic stress disorder. American Journal of Psychiatry, 158, 12271230.CrossRefGoogle ScholarPubMed
Geracioti, T. D. Jr., Baker, D. G., Kasckow, J. W., Strawn, J. R., Jeffrey-Mulchahey, J., Dashevsky, B. A. et al. (2008). Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology, 33, 416424.CrossRefGoogle ScholarPubMed
Gershon, A. A., Vishne, T., & Grunhaus, L. (2007). Dopamine D2-like receptors and the antidepressant response. Biological Psychiatry, 61, 145153.CrossRefGoogle ScholarPubMed
Gillespie, N. A., Johnstone, S. J., Boyce, P., Heath, A. C., & Martin, N. G. (2001). The genetic and environmental relationship between the interpersonal sensitivity measure (IPSM) and the personality dimensions of Eysenck and Cloninger. Personality and Individual Differences, 31, 10391051.CrossRefGoogle Scholar
Glaser, D. (2000). Child abuse and neglect and the brain: A review. Journal of Child Psychology and Psychiatry, 41, 97116.CrossRefGoogle ScholarPubMed
Glatt, S. J., Bolaños, C. A., Trksak, G. H., & Jackson, D. (2000). Effects of prenatal cocaine exposure on dopamine system development: A meta-analysis. Neurotoxicology and Teratology, 22, 617629.CrossRefGoogle ScholarPubMed
Glover, D. A., Stuber, M., & Poland, R. E. (2006). Allostatic load in women with and without PTSD symptoms. Psychiatry, 69, 191203.CrossRefGoogle ScholarPubMed
Gold, P. W., & Chrousos, G. P. (2003). The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111, 2234.CrossRefGoogle Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldstein, D. S. (1981). Plasma norepinephrine during stress in essential hypertension. Hypertension, 3, 551556.CrossRefGoogle ScholarPubMed
Goldstein, L. E., Rasmusson, A. M., Bunney, B. S., & Roth, R. H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. Journal of Neuroscience, 16, 47874798.CrossRefGoogle ScholarPubMed
Graeff, F. G., Viana, M. B., & Mora, P. O. (1997). Dual role of 5-HT in defense and anxiety. Neuroscience and Biobehavioral Reviews, 21, 791799.CrossRefGoogle ScholarPubMed
Grant, K. A., Shively, C. A., Nader, M. A., Ehrenkaufer, R. L., Line, S. W.Morton, T. E., et al. (1998). Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse, 29, 8083.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). Oxford: Oxford University Press.Google Scholar
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2, 271299.CrossRefGoogle Scholar
Gudelsky, G. A., Berry, S. A., & Meltzer, H. Y. (1989). Neurotensin activates tuberoinfundibular dopamine neurons and increases serum corticosterone concentrations in the rat. Neuroendocrinology, 49, 604609.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vasquez, D. M. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (pp. 533577). New York: Wiley.Google Scholar
Gutteling, B. M., de Weerth, C., Willemsen-Swinkels, S. H. N., Huizink, A. C., Mulder, E. J. H., Visser, G. H. A. et al. (2005). The effects of prenatal stress on temperament and problem behavior of 27-month-old toddlers. European Child and Adolescent Psychiatry, 14, 4151.CrossRefGoogle ScholarPubMed
Halperin, J. M., & Schulz, K. P. (2006). Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychological Bulletin, 132, 560581.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D. et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400403.CrossRefGoogle ScholarPubMed
Henry, C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., Le Moal, M., et al. (1995). Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopmaine receptors in the nucleus accumbens. Brain Research, 685, 179186.CrossRefGoogle Scholar
Heym, J., Trulson, M. E., & Jacobs, B. L. (1982). Raphe unit activity in freely moving cats: Effects of phasic auditory and visual stimuli. Brain Research, 232, 2939.CrossRefGoogle ScholarPubMed
Holmes, A. (2008). Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neuroscience and Biobehavioral Reviews, 32, 12931314.CrossRefGoogle ScholarPubMed
Hsu, D. T., Langenecker, S. A., Kennedy, S. E., Zubieta, J. K., & Heitzeg, M. M. (2010). fMRI BOLD responses to negative stimuli in the prefrontal cortex are dependent on levels of recent negative life stress in major depressive disorder. Psychiatry Research, 183, 202208.CrossRefGoogle ScholarPubMed
Huang, C.-J., Franco, R. L., Evans, R. K., & Acevedo, E. O. (2010). Effects of mental challenge on neurovascular responses in healthy male subjects. International Journal of Psychophysiology, 78, 225230.CrossRefGoogle ScholarPubMed
Huizink, A. C., Robles de Medina, P. G., Mulder, E. J., Visser, G. H. A., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085.CrossRefGoogle ScholarPubMed
Hyman, S. E. (2009). How adversity gets under the skin. Nature Neuroscience, 12, 241243.CrossRefGoogle ScholarPubMed
Imperato, A., Cabib, S., & Puglisi-Allegra, S. (1993). Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Research, 60, 333336.CrossRefGoogle Scholar
Imperato, A., Puglisi-Allegra, S., Casolini, P., & Angelucci, L. (1991). Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary–adrenocortical axis. Brain Research, 538, 111117.CrossRefGoogle ScholarPubMed
Inoue, T., Koyama, T., & Yamashita, I. (1993). Effect of conditioned fear stress on serotonin metabolism in the rat brain. Pharmacology, Biochemistry, and Behavior, 44, 371374.CrossRefGoogle ScholarPubMed
Isovich, E., Mijnster, M. J., Flugge, G., & Fuchs, E. (2000). Chronic psycho-social stress reduces the density of dopamine transporters. European Journal of Neuroscience, 12, 10711078.CrossRefGoogle Scholar
Jensen, P. S., Hinshaw, S. P., Kraemer, H. C., Lenora, N., Newcorn, J. H., Abikoff, H. B., et al. (2001). ADHD comorbidity findings from the MTA study: Comparing comorbid subgroups. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 147158.CrossRefGoogle ScholarPubMed
Johns, J. M., Means, L. W., Means, M. J., & McMillen, B. A. (1992). Prenatal exposure to cocaine I: Effects on gestation, development, and activity in Sprague-Dawley rats. Neurotoxicology and Teratology, 14, 337342.CrossRefGoogle ScholarPubMed
Jones, D. J., Foster, S., Forehand, G., & O'Connell, C. (2005). Neighborhood violence and psychosocial adjustment in low-income urban African American children: Physical symptoms as a marker of child adjustment. Journal of Child & Family Studies, 14, 237249.CrossRefGoogle Scholar
Jones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1992). Dopaminergic and serotonergic function following isolation rearing in rats: Study of behavioral responses and postmortem and in vivo neurochemistry. Pharmacology, Biochemistry, and Behavior, 43, 1735.CrossRefGoogle ScholarPubMed
Jones, G. H., Marsden, C. A., & Robbins, T. W. (1990). Increased sensitivity to amphetamine and reward-related stimuli following social isolation in rats: Possible disruption of dopamine-dependent mechanisms of the nucleus accumbens. Psychopharmacology, 102, 364372.CrossRefGoogle ScholarPubMed
Kane, V. B., Fu, Y., Matta, S. G., & Sharp, B. M. (2004). Gestational nicotine exposure attenuates nicotine-stimulated dopamine release in the nucleus accumbens shell of adolescent Lewis rats. Journal of Pharmacological Exposure Therapy, 308, 521528.CrossRefGoogle ScholarPubMed
Kaufman, J. (1991). Depressive disorders in maltreated children. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 257265.CrossRefGoogle ScholarPubMed
Kawahara, H., Yoshida, M., Yokoo, H., Nishi, M., & Tanaka, M. (1993). Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neuroscience Letters, 162, 8184.CrossRefGoogle ScholarPubMed
Kellar, K. J., & Bergstrom, D. A. (1983). Electroconvulsive shock: Effects on biochemical correlates of neurotransmitter receptors in rat brain. Neuropharmacology, 22, 401406.CrossRefGoogle ScholarPubMed
Keeney, A., Jessop, D. S., Harbuz, M. S., Marsden, C. A., Hogg, S., & Blackburn-Munro, R. E. (2006). Differential effects of acute and chronic social defeat stress on hypothalamic–pituitary–adrenal axis function and hippocampal serotonin release in mice. Journal of Neuroendocrinology, 18, 330338.CrossRefGoogle ScholarPubMed
Kertes, D. A., Gunnar, M. R., Madsen, N. J., & Long, J. D. (2008). Early deprivation and home basal cortisol levels: A study of internationally adopted children. Development and Psychopathology, 20, 473491.CrossRefGoogle ScholarPubMed
Khoshbouei, H., Cecchi, M., Dove, S., Javors, M., & Morilak, D. A. (2002). Behavioral reactivity to stress: Amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala. Pharmacology, Biochemistry, and Behavior, 71, 407417.CrossRefGoogle ScholarPubMed
Kilpatrick, D. G., Koenen, K. C., Ruggiero, K. J., Acierno, R., Galea, S., Resnick, H. S., et al. (2007). The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. American Journal of Psychiatry, 164, 16931699.CrossRefGoogle ScholarPubMed
Kippin, T. E., Szumlinski, K. K., Kapasova, Z., Rezner, B., & See, R. E. (2008). Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology, 33, 769782.CrossRefGoogle ScholarPubMed
Kiss, A., & Aguilkara, G. (1992). Participation of α 1-adrenergic receptors in the secretion of hypothalamic corticotropin-releasing hormone during stress. Neuroendocrinology, 56, 153160.CrossRefGoogle Scholar
Kitayama, I., Cintra, A., Janson, A. M., Fuxe, K., Agnati, L. F., Eneroth, P., et al. (1989). Chronic immobilization stress: Evidence for decreases of 5-hydroxy-tryptamine immunoreactivity and for increases of glucocorticoid receptor immunoreactivity in various brain regions of the male rat. Journal of Neural Transmission, 77, 93130.CrossRefGoogle ScholarPubMed
Kitchen, I., Kelly, M., & Turner, M. (1988). Dopamine receptor modulation of corticosterone secretion in neonatal and adult rats. Journal of Pharmacy and Pharmacology, 40, 580581.CrossRefGoogle ScholarPubMed
Koehl, M., Lemaire, V., Vallee, M., Abrous, N., Piazza, P. V., Mayo, W., et al. (2001). Long-term neurodevelopmental and behavioral effects of perinatal life events in rats. Neurotoxiscity Research, 3, 6583.CrossRefGoogle ScholarPubMed
Koenen, K. C., Aiello, A. E., Bakshis, E., Amstadter, A. B., Ruggiero, K. J., Acierno, R., et al. (2009). Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment. American Journal of Epidemiology, 169, 704711.CrossRefGoogle ScholarPubMed
Kohnke, M. D., Wiatr, G., Kolb, W., Kohnke, A. M., Schick, S., Lutz, U., et al. (2003). Plasma homovanillic acid: A significant association with alcoholism is independent of a functional polymorphism of the human catechol-O-methyltransferase gene. Neuropsychopharmacology, 28, 10041010.CrossRefGoogle ScholarPubMed
Koob, G. F. (2009). Dynamics of neuronal circuits in addiction: Reward, antireward, and emotional memory. Pharmacopsychiatry, 42, S32S41.CrossRefGoogle ScholarPubMed
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral and Brain Sciences, 15, 493541.CrossRefGoogle ScholarPubMed
Kudryavtseva, N. N., Bakshtanovskaya, I. V., & Koryakina, L. A. (1991). Social model of depression in mice of C57BL/6J strain. Pharmacology, Biochemistry, and Behavior, 38, 315320.CrossRefGoogle ScholarPubMed
Kuroda, Y., Watanabe, Y., Albeck, D. S., Hastings, N. B., & McEwen, B. S. (1994). Effects of adrenalectomy and type I or type II glucocorticoid receptor activation on 5-HT1A and 5-HT2 receptor binding and 5-HT transporter mRNA expression in rat brain. Brain Research, 648, 157161.CrossRefGoogle ScholarPubMed
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.CrossRefGoogle ScholarPubMed
Lapiz, M. D., Fulford, A., Mchimapura, S., Mason, R., Parker, T., & Marsden, C. A. (2003). Influence of postweaing social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neuroscience of Behavior and Physiology, 33, 1329.CrossRefGoogle ScholarPubMed
Lapiz-Bluhm, M., Soto-Piña, A., Hensler, J., & Morilak, D. (2009). Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology, 202, 329341.CrossRefGoogle Scholar
LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44, 12291238.CrossRefGoogle ScholarPubMed
Lemieux, A. M., & Coe, C. L. (1995). Abuse-related posttraumatic stress disorder: Evidence for chronic neuroendocrine activation in women. Psychosomatic Medicine, 57, 105115.CrossRefGoogle ScholarPubMed
Lesch, K.-P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.CrossRefGoogle ScholarPubMed
Li, H., Zhang, L., Fang, Z., Lin, L., Wu, C., & Huang, Q. (2010). Behavioral and neurobiological studies on the male progeny of maternal rats exposed to chronic unpredictable stress before pregnancy. Neuroscience Letters, 469, 278282.CrossRefGoogle ScholarPubMed
Liberzon, I., Abelson, J. L., Flagel, S. B., Raz, J., & Young, E. A. (1999). Neuroendocrine and psychophysiologic responses in PTSD: A symptom provocation study. Neuropsychopharmacology, 21, 4050.CrossRefGoogle ScholarPubMed
Linnet, K. M., Dalsgaard, S., Obel, C., Wisborg, K., Henriksen, T. B., Rodriguez, A., et al. (2003). Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: Review of the current evidence. American Journal of Psychiatry, 160, 10281040.CrossRefGoogle ScholarPubMed
Liposits, Z., Phelix, C., & Paull, W. K. (1987). Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry and Cell Biology, 86, 541549.Google ScholarPubMed
Ljungberg, T., Apicella, P., & Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67, 145163.CrossRefGoogle ScholarPubMed
López, J. F., Akil, H., & Watson, S. J. (1999). Neural circuits mediating stress. Biological Psychiatry, 46, 14611471.CrossRefGoogle ScholarPubMed
López, J. F., Chalmers, D. T., Little, K. Y., & Watson, S. J. (1998). A. E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biological Psychiatry, 43, 547573.CrossRefGoogle Scholar
López, J. F., Liberzon, I., Vázquez, D. M., Young, E. A., & Watson, S. J. (1999). Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biological Psychiatry, 45, 934937.CrossRefGoogle ScholarPubMed
Louilot, A., LeMoal, M., & Simon, H. (1989). Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience, 29, 4556.CrossRefGoogle ScholarPubMed
Lucas, L. R., Celen, Z., Tamashiro, K. L. K., Blanchard, R. J., Blanchard, D. C., Markham, C., et al. (2004). Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience, 124, 449457.CrossRefGoogle ScholarPubMed
Luciana, M. (2006). Cognitive neuroscience and the prefrontal cortex: Normative development and vulnerability to psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (Vol. 2, 2nd ed., pp. 292331). Hoboken, NJ: Wiley.Google Scholar
Lukkes, J. L., Watt, M. J., Lowry, C. A., & Forster, G. L. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in Behavioral Neuroscience, 3, 112.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., et al. (2006). Beyond the stress concept: Allostatic load—A developmental biological and cognitive perspective. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 578628). Hoboken, NJ: Wiley.Google Scholar
Lynam, D. R., Caspi, A., Moffitt, T. E., Wikström, P. H., Loeber, R., & Novak, S. (2000). The interaction between impulsivity and neighborhood context in offending: The effects of impulsivity are stronger in poorer neighborhoods. Journal of Abnormal Psychology, 109, 563574.CrossRefGoogle ScholarPubMed
MacArthur, S., McHale, E.Dalley, J. W., Buckingham, J. C., & Gillies, G. E. (2005). Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. Journal of Neuroendocrinology, 17, 475482.CrossRefGoogle Scholar
MacArthur, S., McHale, E., & Gillies, G. E. (2007). The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocortoicoid exposure in a sex-region and time-specific manner. Neuropsychopharmacology, 32, 14621476.CrossRefGoogle Scholar
Mann, J. J., & Currier, D. (2007). A review of prospective studies of biologic predictors of suicidal behavior in mood disorders. Archives of Suicide Research, 11, 316.CrossRefGoogle ScholarPubMed
Marshal, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A., & Zeanah, C. H. (2008). Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Development and Psychopathology, 20, 861880.CrossRefGoogle Scholar
Martinez, M., Calvo-Torrent, A., & Pico-Alfonso, M. A. (1998). Social defeat and subordination as models of social stress in laboratory rodents: A review. Aggressive Behavior, 24, 241256.3.0.CO;2-M>CrossRefGoogle Scholar
Martinowich, K., & Lu, B. (2007). Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology, 33, 7383.CrossRefGoogle ScholarPubMed
Maynert, E. W., & Levi, O. (1964). Stress-induced release of brain norepinephrine and its inhibition by drugs. Journal of Pharmacology and Experimental Therapeutics, 143, 9095.Google ScholarPubMed
McEwen, B. S. (1998a). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.CrossRefGoogle Scholar
McEwen, B. S. (1998b). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle Scholar
McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8, 367381.Google Scholar
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 3047.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
Mead, H. K., Beauchaine, T. P., & Shannon, K. E. (2010). Neurobiological adaptations to violence across development. Development and Psychopathology, 22, 122.CrossRefGoogle ScholarPubMed
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differ-ences in stress reactivity across generations. Annual Review of Neuroscience, 24, 11611192.CrossRefGoogle Scholar
Meaney, M. J., Brake, W., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug use? Psychoneuroendocrinology, 27, 127138.CrossRefGoogle Scholar
Melke, J., Westberg, L., Nilsson, S., Landen, M., Soderstrom, H., Baghaei, F., et al. (2003): A polymorphism in the serotonin receptor 3A (HTR 3A) gene and its association with harm avoidance in women. Archives of General Psychiatry, 60, 10171023.CrossRefGoogle ScholarPubMed
Metz, A., & Heal, D. J. (1986). In mice repeated administration of electroconvulsive shock or desmethylimipramine produces rapid alterations of 5-HT2 mediated head-twitch responses and cortical 5-HT2 receptor number. European Journal of Pharmacology, 126, 159162.CrossRefGoogle ScholarPubMed
Miczek, K. A., Covington, H. III, Nikulina, E. M., & Hammer, R. P. Jr. (2004). Aggression and defeat: Persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neuroscience and Biobehavioral Reviews, 27, 787802.CrossRefGoogle ScholarPubMed
Minabe, Y., Ashby, C. R., Heyser, C., Spear, L. P., & Wang, R. Y. (1992). The effects of prenatal cocaine exposure on spontaneously active midbrain dopamine neurons in adult male offspring: An electrophysiological study. Brain Research, 586, 152156.CrossRefGoogle Scholar
Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D.-H., & Tabira, T. (2000). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. Journal of Neuroscience, 20, 15681574.CrossRefGoogle ScholarPubMed
Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., et al. (2002). Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. Nature Neuroscience, 5, 169174.CrossRefGoogle ScholarPubMed
Moriceau, S., Roth, T. L., & Sullivan, R. M. (2010). Rodent model of infant attachment learning and stress. Developmental Psychobiology, 52, 651660.CrossRefGoogle Scholar
Morilak, D. A. (2007). Norepinephrine and stress. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 275296). New York: Cambridge University Press.CrossRefGoogle Scholar
Morilak, D. A., Barrera, G., Echevarria, D. J., Garcia, A. S., Hernandez, A., Ma, S., et al. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 12141224.CrossRefGoogle ScholarPubMed
Morrow, B. A., Lee, E. J. K., Taylor, J. R., Elsworth, J. D., Nye, H. E., & Roth, R. H. (1997). (S)-(−)-HA-966, a γ-hydroxybutyrate-like agent, prevents enhanced mesocorticolimbic dopamine metabolism and behavioral correlates of restraint stress, conditioned fear, and cocaine sensitization. Journal of Pharmacology & Experimental Therapeutics, 283, 712721.Google Scholar
MTA Cooperative Group. (1999). A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 56, 10731086.CrossRefGoogle Scholar
Mustapić, M., Pivac, N., Kozarić-Kovacić, D., Dezeljin, M., Cubells, J. F., & Mück-Seler, D. (2007). Dopamine beta-hydroxylase (DBH) activity and -1021C/T polymorphism of DBH gene in combat-related post-traumatic stress disorder. American Journal of Medical Genetics, 144B, 10871089.CrossRefGoogle ScholarPubMed
Nakaki, T., Nakayama, M., Yamamoto, S., & Kato, R. (1990). α1-adrenergic stimulation and β1-adreneric inhibition of DNA synthesis in vascular smooth muscle cells. Molecular Pharmacology, 37, 3036.Google Scholar
Navarro, H. A., Seidler, F. J., Whitmore, W. L., & Slotkin, T. A. (1988). Prenatal exposure to nicotine via maternal infusions: Effects on development of catecholamine systems. Journal of Pharmacological Experimental Therapy, 244, 940944.Google ScholarPubMed
Nemeroff, C. B., Bremner, J. D., Foa, E. B., Mayberg, H. S., North, C. S., & Stein, M. B. (2006). Posttraumatic stress disorder: A state-of-the-science review. Journal of Psychiatric Research, 40, 121.CrossRefGoogle ScholarPubMed
Neuner, F., Schauer, M., Karunakara, U., Klaschik, C., Robert, C., & Elbert, T. (2004). Psychological trauma and evidence for enhanced vulnerability for posttraumatic stress disorder through previous trauma among West Nile refugees. BMC Psychiatry, 4, 34.CrossRefGoogle ScholarPubMed
Niesler, B., Flohr, T., Nothen, M. M., Fischer, C., Rietschel, M., Franzek, E., et al. (2001). Association between the 5′ UTR variant C178T of the serotonin receptor gene HTR3A and bipolar affective disorder. Pharmacogenetics, 11, 471475.CrossRefGoogle ScholarPubMed
O'Connor, T., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children's behavioural/emotional problems at 4 years. British Journal of Psychiatry, 180, 502508.CrossRefGoogle ScholarPubMed
Onur, O. A., Walter, H., Schlaepfer, T. E., Rehme, A. K., Schmidt, C., Keysers, C., et al. (2009). Noradrenergic enhancement of amygdala responses to fear. Social Cognitive and Affective Neuroscience, 4, 119126.CrossRefGoogle ScholarPubMed
Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews, 22, 502548.CrossRefGoogle ScholarPubMed
Pandey, G. N., Dwivedi, Y., Rizavi, H. S., Ren, X., Pandey, S. C., Pesold, C., et al. (2002). Higher expression of serotonin 5-HT2A receptors in the postmortem brains of teenage suicide victims. American Journal of Psychiatry, 159, 419429.CrossRefGoogle ScholarPubMed
Pardon, M.-C., Ma, S., & Morilak, D. A. (2003). Chronic cold stress sensitizes brain noradrenergic reactivity and noradrenergic facilitation of the HPA stress response in Wistar Kyoto rats. Brain Research, 971, 5565.CrossRefGoogle ScholarPubMed
Parker, K. J., Buckmaster, C. L., Sundlass, K., Schatzberg, A. F., & Lyons, D. M. (2006). Maternal mediation, stress inoculation, and the development of neuroendocrine stress resistance in primates. Proceedings of the National Academy of Sciences of the United States of America, 103, 30003005.CrossRefGoogle ScholarPubMed
Pascucci, T., Ventura, R., Latagliata, E. C., Cabib, S., & Puglisi-Allegra, S. (2007). The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. Cerebral Cortex, 17, 27962804.CrossRefGoogle ScholarPubMed
Pei, Q., Zetterström, T., & Fillenz, M. (1990). Tail pinch-induced changes in the turnover and release of dopamine and 5-hydroxytryptamine in different brain regions of the rat. Neuroscience, 35, 133138.CrossRefGoogle ScholarPubMed
Perrone-Bizzozero, N., & Bolognani, F. (2002). Role of HuD and other RNA-binding proteins in neural development and plasticity. Journal of Neuroscience Research, 68, 121126.CrossRefGoogle ScholarPubMed
Perry, B. D. (2008). Child maltreatment: A neurodevelopmental perspective on the role of trauma and neglect in psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 93128). Hoboken, NJ: Wiley.Google Scholar
Perry, B. D., Pollard, R., Blakely, T., Baker, W., & Vigilante, D. (1995). Childhood trauma, the neurobiology of adaptation and ‘use-dependent’ development of the brain: How “states” become “traits.” Infant Mental Health Journal, 16, 271291.3.0.CO;2-B>CrossRefGoogle Scholar
Pervanidou, P., Kolaitis, G., Charitaki, S., Lazaropoulou, C., Papassotiriou, I., Hindmarsh, P.. et al. (2007). The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: Progressive divergence of noradrenaline and cortisol concentrations over time. Biological Psychiatry, 62, 10951102.CrossRefGoogle ScholarPubMed
Philbin, K. E., Bateman, R. J., & Mendelowitz, D. (1990). Clonidine, an α 2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguous. Brain Research, 1347, 6570.CrossRefGoogle Scholar
Phillips, P. E., Walton, M. E., & Jhou, T. C. (2007). Calculating utility: Preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology, 191, 483495.CrossRefGoogle ScholarPubMed
Pitman, R. K. (1989). Post-traumatic stress disorder, hormones, and memory. Biological Psychiatry, 26, 221223.CrossRefGoogle ScholarPubMed
Pollak, S. D., Nelson, C. A., Schlaak, M. F., Roeber, B. J., Wewerka, S. S., Wiik, K. L., Gunnar, M. R. et al. (2010). Neurodevelopmental effects of early deprivation in post-institutionalized children. Child Development, 81, 224236.CrossRefGoogle Scholar
Pollak, S. D., & Sinha, P. (2002). Effects of early experience on children's recognition of facial displays of emotion. Developmental Psychology, 38, 784791.CrossRefGoogle ScholarPubMed
Pollak, S. D., & Tolley-Schell, S. A. (2003). Selective attention to facial emotion in physically abused children. Journal of Abnormal Psychology, 112, 323338.CrossRefGoogle ScholarPubMed
Pompeiano, M., Palacios, J. M., & Mengod, G. (1994). Distribution of the serotonin 5-HT2 receptor family mRNAs: Comparison between 5-HT2A and 5HT2C receptors. Molecular Brain Research, 23, 163178.CrossRefGoogle Scholar
Pruessner, J. C., Champagne, F., Meaney, M., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C] Raclopride. Journal of Neuroscience, 24, 28252831.CrossRefGoogle ScholarPubMed
Puglisi-Allegra, S., & Cabib, S. (1990). Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse. Aggressive Behavior, 16, 271284.3.0.CO;2-H>CrossRefGoogle Scholar
Raineki, C., Pickenhagen, A., Roth, T. L., Babstock, D. M., McLean, J. H., Harley, C. W., et al. (2010). The neurobiology of infant maternal odor learning. Brazilian Journal of Medical and Biological Research, 43, 914919.CrossRefGoogle ScholarPubMed
Rasheed, M., Ahmad, A., Pandey, C. P., Chaturevi, R. K., & Lohani, M. (2010). Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochemistry Research, 35, 2232.CrossRefGoogle ScholarPubMed
Reeder, D. M., & Kramer, K. M. (2005). Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. Journal of Mammalogy, 86, 225235.CrossRefGoogle Scholar
Rentesi, G., Antoniou, K., Marselos, M., Fotopoulos, A., Jihad, A., & Konstandi, M. (2010). Long-term consequences of early maternal deprivation in serotonergic activity and HPA function in adult rat. Neuroscience Letters, 480, 711.CrossRefGoogle ScholarPubMed
Retz, W., Retz-Junginger, P., Supprian, T., Thome, J., & Rosler, M. (2004). Association of serotonin transporter promoter gene polymorphism with violence: Relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behavioral Sciences and the Law, 22, 415425.CrossRefGoogle ScholarPubMed
Richardson, G. A., Conroy, M. L., & Day, N. L. (1996). Prenatal cocaine exposure: Effects on the development of school-age children. Neurotoxicology and Teratology, 18, 627634.CrossRefGoogle ScholarPubMed
Rieder, C., & Cicchetti, D. (1989). Organizational perspective on cognitive control functioning and cognitive–affective balance in maltreated children. Developmental Psychology, 25, 382393.CrossRefGoogle Scholar
Roberts, A. D., Moore, C. F., DeJesus, O. T., Barnhart, T. E., Larson, J. A., Mukherjee, J., et al. (2004). Prenatal stress, moderate fetal alcohol, and dopamine system function in rhesus monkeys. Neurotoxicology and Teratology, 26, 169178.CrossRefGoogle ScholarPubMed
Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 2553.CrossRefGoogle ScholarPubMed
Rodriguez, A., & Bohlin, G. (2004). Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? Journal of Child Psychology and Psychiatry, 46, 246254.CrossRefGoogle Scholar
Romana-Souza, B., Otranto, M., Vieira, A. M., Filgueiras, C. C., Fierro, I. M., & Monte-Alto-Costa, A. (2010). Rotational stress-induced increase in epinephrine levels delays cutaneous wound healing in mice. Brain, Behavior, and Immunity, 24, 427437.CrossRefGoogle ScholarPubMed
Romero, L. M., Dickens, M. J., & Cyr, N. E. (2009). The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Hormones and Behavior, 55, 375389.CrossRefGoogle Scholar
Rothbart, M. K., Sheese, B. E., & Posner, M. I. (2007). Executive attention and effortful control: Linking temperament, brain networks, and genes. Child Development Perspectives, 1, 27.CrossRefGoogle Scholar
Rutter, M. (2007). Gene–environment interdependence. Developmental Science, 10, 1218.CrossRefGoogle ScholarPubMed
Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397419.CrossRefGoogle ScholarPubMed
Sakai, J. T., Boardman, J. D., Gelhorn, H. L., Smolen, A., Corley, R. P., Huizinga, D., et al. (2010). Using trajectory analyses to refine phenotype for genetic association: Conduct problems and the serotonin transporter (5HTTLPR). Psychiatric Genetics, 20, 199206.CrossRefGoogle Scholar
Sanchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623631.CrossRefGoogle ScholarPubMed
Sander, T., Harms, H., Dufeu, P., Kuhn, S., Hoehe, M., Lesch, K.-P., et al. (1998). Serotonin transporter gene variants in alcohol-dependent subjects with dissocial personality disorder. Biological Psychiatry, 43, 908912.CrossRefGoogle ScholarPubMed
Scafidi, F. A., Field, T. M., Wheeden, A., Schanberg, S., Kuhn, C., Symanski, R., et al. (1996). Cocaine-exposed preterm neonates show behavioral and hormonal differences. Pediatrics, 97, 851855.Google ScholarPubMed
Schmidt, M. V., Scharf, S. H., Liebl, C., Harbich, D., Mayer, B., Holsboer, F., et al. (2010). A novel chronic social stress paradigm in female mice. Hormones and Behavior, 57, 415420.CrossRefGoogle ScholarPubMed
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamic–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65, 450460.CrossRefGoogle Scholar
Schore, A. N. (1996). The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology. Development and Psychopathology, 8, 5987.CrossRefGoogle Scholar
Schore, J. R. (2003). The development of attachment and affect regulation in infancy and childhood with possible clues to psychological gender. In Sanville, J. B. & Ruderman, E. B. (Eds.), Thereapies with wonen in transition: Toward relational perspectives with today's women (pp. 7789). Madison, CT: International Universities Press.Google Scholar
Shackman, J. E., Wismer Fries, A. B., & Pollak, S. D. (2008). Environmental Influences on brain–behavioral development: Evidence from child abuse and neglect. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 869882). Cambridge, MA: MIT Press.Google Scholar
Shannon, K. E., Sauder, C., Beauchaine, T. P., & Gatzke-Kopp, L. (2009). Disrupted effective connectivity between the medial frontal cortex and the caudate in adolescent boys with externalizing behavior disorders. Criminal Justice and Behavior, 36, 11411157.CrossRefGoogle Scholar
Sheikh, N., Ahmad, A., Siripurapu, K. B., Kumar Kuchibhotla, V. K., Singh, S., & Palit, G. (2007). Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. Journal of Ethnopharmacology, 111, 671676.CrossRefGoogle ScholarPubMed
Shields, A. M., Cicchetti, D., & Ryan, R. M. (1994). The development of emotional and behavioral self-regulation and social competence among maltreated school-age children. Development and Psychopathology, 6, 5775.CrossRefGoogle ScholarPubMed
Shinba, T., Ozawa, N., Yoshii, M., & Yamamoto, K. (2010). Delayed increase of brain noradrenaline after acute footshock stress in rats. Neurochemical Research, 35, 412417.CrossRefGoogle ScholarPubMed
Silva, H., Iturra, P., Solari, A., Villarroel, J., Jerez, S., Jiménez, M., et al. (2010). Fluoxetine response in impulsive–aggressive behavior and serotonin transporter polymorphism in personality disorder. Psychiatric Genetics, 20, 2530.CrossRefGoogle ScholarPubMed
Silverberg, A. B., Shah, S. D., Haymond, M. W., & Cryer, P. E. (1978). Norepinephrine: Hormone and neurotransmitter in man. American Journal of Physiology: Endocrinology and Metabolism, 234, E252E256.Google ScholarPubMed
Simpson, K. L., & Lin, R. C. S. (2007). Neuroanatomical and chemical organization of the locus coeruleus. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 952). New York: Cambridge University Press.CrossRefGoogle Scholar
Slotkin, T. A., Lappi, S. E., & Seidler, F. J. (1993). Impact of fetal nicotine exposure on development of rat brain regions: Critical sensitive periods or effects of withdrawal? Brain Research Bulletin, 31, 319328.CrossRefGoogle ScholarPubMed
Smith, A. K., Maloney, E. M., Falkenberg, V. R., Dimulescu, I., & Rajeevan, M. S. (2009). An angiotensin-1 converting enzyme polymorphism is associated with allostatic load mediated by C-reactive protein, interleukin-6 and cortisol. Psychoneuroendocrinology, 34, 597606.CrossRefGoogle ScholarPubMed
Soubrié, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. Behavioral and Brain Sciences, 9, 319335.CrossRefGoogle Scholar
Southwick, S. M., Krystal, J. H., Morgan, C. A., Johnson, D., Nagy, L. M., Nicolaou, A., et al. (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry, 50, 266274.CrossRefGoogle ScholarPubMed
Spear, L. P. (2007). Assessment of adolescent neurotoxicity: Rationale and methodological considerations. Neurotoxicology and Teratology, 29, 19.CrossRefGoogle ScholarPubMed
Stanwood, G. D., Washington, R. A., Shumsky, J. S., & Levitt, P. (2001). Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience, 106, 514.CrossRefGoogle ScholarPubMed
Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318327.CrossRefGoogle ScholarPubMed
Sterling, P., & Eyer, J. (1981). Biological bases of stress-related mortality. Social Science and Mdicine, 15E, 342.CrossRefGoogle Scholar
Sterling, P., & Eyer, J. (1988). Allostatis: A new paradign to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition, and health (pp. 629649). New York: Wiley.Google Scholar
Stockmeier, C. A., & Ordway, G. A. (2007). Interactions of norepinephrine with other neurotransmitter systems: Anatomical basis and pharmacology. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 5367). New York: Cambridge University Press.CrossRefGoogle Scholar
Sullivan, R. M., & Brake, W. G. (2003). What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: The critical role of early developmental events on prefrontal function. Behavior and Brain Research, 146, 4355.CrossRefGoogle ScholarPubMed
Sullivan, G. M., Coplan, J. D., Kent, J. M., & Gorman, J. M. (1999). The noradrenergic system in pathological anxiety: A focus on panic with relevance to generalized anxiety and phobias. Biological Psychiatry, 46, 12051218.CrossRefGoogle ScholarPubMed
Sullivan Hanley, N. R., & Van de Kar, L. D. (2003). Serotonin and the neuroendocrine regulation of the hypothalamic–pituitary–adrenal axis in health and disease. Vitamins and Hormones, 66, 189255.CrossRefGoogle Scholar
Suzuki, M., Hurd, Y. L., Sokoloff, P., Schwartz, J. C., & Sedvall, G. (1998). D3 dopamine receptor mRNA is widely expressed in human brain using 7-[3H]hydroxyl-N,N-di-n-propyl-2-aminotetralin. Brain Research, 779, 5874.CrossRefGoogle Scholar
Swartz, J. R. (1999). Dopamine projections and frontal systems function. In Miller, B. L. & Cummings, J. L. (Eds.), The human frontal lobes: Functions and disorders (pp. 159173). New York: Guilford Press.Google Scholar
Swiergiel, A. H., Leskov, I. L., & Dunn, A. J. (2008). Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behavioural Brain Research, 186, 3240.CrossRefGoogle ScholarPubMed
Swinny, J. D., O'Farrell, E., Bingham, B. C., Piel, D. A., Valentino, R. J., & Beck, S. G. (2010). Neonatal rearing conditions distinctly shape locus coeruleus neuronal activity, dendritic arborization, and sensitivity to corticotrophin-releasing factor. International Journal of Neuropsychopharmacology, 13, 515525.CrossRefGoogle ScholarPubMed
Takahashi, L. K., Turner, J. G., & Kalin, N. H. (1992). Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Research, 574, 131137.CrossRefGoogle ScholarPubMed
Tang, Y. L., Li, W., Mercer, K., Bradley, B., Gillespie, C. F., Bonsall, R., et al. (2010). Genotype-controlled analysis of serum dopamine β-hydroxylase activity in civilian post-traumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34, 13961401.CrossRefGoogle ScholarPubMed
Teicher, M. H. (2010). Commentary: Childhood abuse: New insights into its association with posttraumatic stress, suicidal ideation, and aggression. Journal of Pediatric Psychology, 35, 578580.CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews, 27, 3344.CrossRefGoogle ScholarPubMed
Thomas, M. J., Beurrier, C., Bonci, A., & Malenka, R. C. (2001). Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience, 4, 12171223.CrossRefGoogle ScholarPubMed
Tidey, J. W., & Miczek, K. A. (1996). Social defeat stress selectively alters mesocorticolimbic dopamine release: An in vivo microdialysis study. Brain Research, 721, 140149.CrossRefGoogle Scholar
Tisch, S., Silberstein, P., Limousin-Dowsey, P., & Jahanshahi, M. (2004). The basal ganglia: Anatomy, physiology, and pharmacology. Psychiatric Clinics of North America, 27, 757759.CrossRefGoogle ScholarPubMed
Tronche, C., Pierard, C., Coutan, M., Chauveau, F., Liscia, P., & Beracochea, D. (2010). Increased stress-induced intra-hippocampus corticosterone rise associated with memory impairments in middle-aged mice. Neurobiology of Learning and Memory, 93, 343351.CrossRefGoogle ScholarPubMed
True, W. J., Rice, J., Eisen, S. A., Heath, A. C., Goldberg, J., Lyons, M. J., et al. (1993). A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Archives of General Psychiatry, 50, 257264.CrossRefGoogle ScholarPubMed
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53, 865871.CrossRefGoogle Scholar
Tyrka, A. R., Wier, L., Price, L. H., Ross, N., Anderson, G. M., Wilkinson, C. W., et al. (2008). Childhood parental loss and adult hypothalamic–pituitary–adrenal function. Biological Psychiatry, 63, 11471154.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2008). Moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis of serotonin transporter gene–environment interaction. Molecular Psychiatry, 13, 131146.CrossRefGoogle Scholar
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.CrossRefGoogle ScholarPubMed
Uno, H., Tarara, R., Else, J. G., Suleman, M. A., & Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9, 17051711.CrossRefGoogle ScholarPubMed
Vaidya, C., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America, 95, 1449414499.CrossRefGoogle ScholarPubMed
van Goozen, S. H. M., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149182.CrossRefGoogle ScholarPubMed
van Stegeren, A. H., Wolf, O. T., Everaerd, W., Scheltens, P., Barkhof, F., & Rombouts, S. A. R. B. (2007). Endogenous cortisol level interacts with noradrenergic activation in the human amygdala. Neurobiology of Learning and Memory, 87, 5766.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y., & Gatley, S. J. (2002). Mechanism of action of methylphenidate: Insights from PET imaging studies. Journal of Attention Disorders, 6, S31S43.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G.-J., Kollins, S. H., Wigal, T. L., Newcorn, J. H., Telang, F., et al. (2009). Evaluating dopamine reward pathway in ADHD. Journal of the American Medical Association, 302, 10841091.CrossRefGoogle ScholarPubMed
Vollmayr, B., Keck, S., Henn, F. A., & Schloss, P. (2000). Acute stress decreases serotonin transporter mRNA in the raphe pontis but not in other raphe nuclei of the rat. Neuroscience Letters, 290, 109112.CrossRefGoogle Scholar
Waeber, C., Sebben, M., Nieoullon, A., Bockaert, J., & Dumuis, A. (1994). Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology, 33, 527541.CrossRefGoogle ScholarPubMed
Warner, T. D., Behnke, M., Eyler, F. D., Padgett, K., Leonard, C., Hou, W. et al. (2006). Diffusion tensor imaging of frontal white matter and executive functioning in cocaine exposed children. Pediatrics, 118, 20142024.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
Weinstein, A. A., Deuster, P. A., Francis, J. L., Bonsall, R. W., Tracy, R. P., & Kop, W. J. (2010). Neurohormonal and inflammatory hyper-responsiveness to acute mental stress in depression. Biological Psychology, 84, 228234.CrossRefGoogle ScholarPubMed
Weintraub, A., Singaravelu, J., & Bhatnagar, S. (2010). Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Research, 1343, 8392.CrossRefGoogle ScholarPubMed
Welberg, L. A. M., & Plotsky, P. M. (2007). Animal models of psychopathology: Focus on norepinephrine. In Ordway, G. A., Schwartz, M. A., & Frazer, A. (Eds.), Brain norepinephrine: Neurobiology and therapeutics (pp. 299340). New York: Cambridge University Press.CrossRefGoogle Scholar
Wiik, K. L., Loman, M. M., Van Ryzin, M. J., Armstrong, J. M., Essex, M. J., Pollak, S. D., et al. (2011). Behavioral and emotional symptoms of post-institutionalized children in middle childhood. Journal of Child Psychiatry and Psychology, 52, 5663.CrossRefGoogle ScholarPubMed
Wirtz, P. H., Siegrist, J., Rimmele, U., & Ehlert, U. (2008). Higher overcommitment to work is associated with lower norepinephrine secretion before and after acute psychosocial stress in men. Psychoneuroendocrinology, 33, 9299.CrossRefGoogle ScholarPubMed
Wismer Fries, A. B., Shirtcliff, E. A., & Pollak, S. D. (2008). Neuroendocrine dysregulation following early social deprivation in children. Developmental Psychobiology, 50, 588599.CrossRefGoogle Scholar
Xie, P., Kranzler, H. R., Poling, J., Stein, M. B., Anton, R. F., Brady, K., et al. (2009). Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in two independent populations. Archives of General Psychiatry, 66, 12011209.CrossRefGoogle Scholar
Yamada, K., Hattori, E., Iwayama, Y., Ohnishi, T., Ohba, H., Toyota, T., et al. (2006). Distinguishable haplotype blocks in the HTR 3A and HTR 3B region in the Japanese reveal evidence of association of HTR 3B with female major depression. Biological Psychiatry, 60, 192201.CrossRefGoogle ScholarPubMed
Zhang, R., Jankord, R., Flak, J. N., Solomon, M. B., D'Alessio, D. A., & Herman, J. P. (2010). Role of glucocorticoids in tuning hindbrain stress integration. Journal of Neuroscience, 30, 1490714914.CrossRefGoogle ScholarPubMed
Zoli, M., Cintra, A., Zini, I., Hersh, L.B., Gustafsson, J., Fuxe, K., et al. (1990). Nerve clusters in dorsal striatum and nucleus accumbens of the male rat demonstrated by glucocorticoid receptor immunoreactivity. Journal of Chemical Neuroanatomy, 3, 355366.Google ScholarPubMed
82
Cited by