Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-9z9qw Total loading time: 0.34 Render date: 2021-08-03T23:32:51.271Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Upper semi-continuity of the Hilbert–Kunz multiplicity

Published online by Cambridge University Press:  02 February 2016

Ilya Smirnov
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA email ismirnov@umich.edu Current address: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We prove that the Hilbert–Kunz multiplicity is upper semi-continuous in F-finite rings and algebras of essentially finite type over an excellent local ring.

Type
Research Article
Copyright
© The Author 2016 

References

Aberbach, I. M. and Enescu, F., Lower bounds for Hilbert–Kunz multiplicities in local rings of fixed dimension, Michigan Math. J. 57 (2008), 116; Special volume in honor of Melvin Hochster; MR 2492437 (2010h:13028).CrossRefGoogle Scholar
Blickle, M. and Enescu, F., On rings with small Hilbert–Kunz multiplicity, Proc. Amer. Math. Soc. 132 (2004), 25052509 (electronic); MR 2054773 (2005b:13029).CrossRefGoogle Scholar
Brenner, H. and Monsky, P., Tight closure does not commute with localization, Ann. of Math. (2) 171 (2010), 571588; MR 2630050 (2011d:13005).CrossRefGoogle Scholar
Enescu, F. and Shimomoto, K., On the upper semi-continuity of the Hilbert–Kunz multiplicity, J. Algebra 285 (2005), 222237; MR 2119113 (2005j:13017).CrossRefGoogle Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965); MR 0199181 (33 #7330).Google Scholar
Hochster, M., Foundations of tight closure, Lecture Notes for Math 711, Fall 2007, University of Michigan (2007); available at http://www.math.lsa.umich.edu/∼hochster/711F07/711.html.Google Scholar
Hochster, M. and Huneke, C., F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 162; MR 1273534 (95d:13007).Google Scholar
Huneke, C. and Swanson, I., Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336 (Cambridge University Press, Cambridge, 2006); MR 2266432 (2008m:13013).Google Scholar
Huneke, C. and Yao, Y., Unmixed local rings with minimal Hilbert–Kunz multiplicity are regular, Proc. Amer. Math. Soc. 130 (2002), 661665.CrossRefGoogle Scholar
Kunz, E., Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772784; MR 0252389 (40 #5609).CrossRefGoogle Scholar
Kunz, E., On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 9991013; MR 0432625 (55 #5612).CrossRefGoogle Scholar
Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, vol. 56, second edition (Benjamin/Cummings Publishing, Reading, MA, 1980); MR 575344 (82i:13003).Google Scholar
Monsky, P., The Hilbert–Kunz function, Math. Ann. 263 (1983), 4349; MR 697329 (84k:13012).CrossRefGoogle Scholar
Monsky, P., Hilbert–Kunz functions in a family: point-S 4 quartics, J. Algebra 208 (1998), 343358; MR 1644019 (99k:13005).CrossRefGoogle Scholar
Shepherd-Barron, N. I., On a problem of Ernst Kunz concerning certain characteristic functions of local rings, Arch. Math. (Basel) 31 (1978/79), 562564; MR 531569 (81e:13012).CrossRefGoogle Scholar
Tucker, K., F-signature exists, Invent. Math. 190 (2012), 743765; MR 2995185.CrossRefGoogle Scholar
Watanabe, K. and Yoshida, K., Hilbert–Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295317; MR 1774769 (2001h:13032).CrossRefGoogle Scholar
You have Access
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Upper semi-continuity of the Hilbert–Kunz multiplicity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Upper semi-continuity of the Hilbert–Kunz multiplicity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Upper semi-continuity of the Hilbert–Kunz multiplicity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *