Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-4lvx9 Total loading time: 0.319 Render date: 2021-09-27T14:28:31.506Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Topological K-theory of complex noncommutative spaces

Published online by Cambridge University Press:  22 September 2015

Anthony Blanc*
Affiliation:
Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany email anthony.blanc@ihes.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this work is to give a definition of a topological K-theory for dg-categories over $\mathbb{C}$ and to prove that the Chern character map from algebraic K-theory to periodic cyclic homology descends naturally to this new invariant. This topological Chern map provides a natural candidate for the existence of a rational structure on the periodic cyclic homology of a smooth proper dg-algebra, within the theory of noncommutative Hodge structures. The definition of topological K-theory consists in two steps: taking the topological realization of algebraic K-theory and inverting the Bott element. The topological realization is the left Kan extension of the functor ‘space of complex points’ to all simplicial presheaves over complex algebraic varieties. Our first main result states that the topological K-theory of the unit dg-category is the spectrum $\mathbf{BU}$. For this we are led to prove a homotopical generalization of Deligne’s cohomological proper descent, using Lurie’s proper descent. The fact that the Chern character descends to topological K-theory is established by using Kassel’s Künneth formula for periodic cyclic homology and the proper descent. In the case of a dg-category of perfect complexes on a separated scheme of finite type, we show that we recover the usual topological K-theory of complex points. We show as well that the Chern map tensorized with $\mathbb{C}$ is an equivalence in the case of a finite-dimensional associative algebra – providing a formula for the periodic homology groups in terms of the stack of finite-dimensional modules.

Type
Research Article
Copyright
© The Author 2015 

References

Baker, A. and Richter, B., Uniqueness of E infinity structures for connective covers, Proc. Amer. Math. Soc. 136 (2008), 707714.CrossRefGoogle Scholar
Barwick, C., On (enriched) left Bousfield localization of model categories, Preprint (2007),arXiv:0708.2067.Google Scholar
Bass, H., Algebraic K-theory (WA Benjamin, New York, 1968).Google Scholar
Blanc, A., Invariants topologiques des espaces non commutatifs, Preprint (2013),arXiv:1307.6430, PhD thesis, Université Montpellier 2 (in French).Google Scholar
Blander, B. A., Local projective model structures on simplicial presheaves, J. K-Theory 24 (2001), 283301.Google Scholar
Bondal, A. I. and Orlov, D. O., Derived categories of coherent sheaves, in Proceedings of the International Congress of Mathematicians 2002 (Higher Education Press, Beijing, 2002), 47.Google Scholar
Bousfield, A. and Friedlander, E., Homotopy theory of  Γ-spaces, spectra, and bisimplicial sets, in Geometric applications of homotopy theory, II, Lecture Notes in Mathematics, 658 (Springer, Berlin, 1978), 80130.CrossRefGoogle Scholar
Cisinski, D.-C., Descente par éclatements en K-théorie invariante par homotopie, Ann. of Math. (2) 177 (2013), 425448.CrossRefGoogle Scholar
Cisinski, D.-C. and Tabuada, G., Non-connective K-theory via universal invariants, Compositio Math. 147 (2011), 12811320.CrossRefGoogle Scholar
Cisinski, D.-C. and Tabuada, G., Symmetric monoidal structure on non-commutative motives, J. K-Theory 9 (2012), 201268.CrossRefGoogle Scholar
Cortiñas, G., Haesemeyer, C., Schlichting, M. and Weibel, C., Cyclic homology, cdh-cohomology and negative K-theory, Ann. of Math. (2) (2008), 549573.CrossRefGoogle Scholar
Deligne, P., Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.CrossRefGoogle Scholar
Dugger, D., Universal homotopy theories, Adv. Math. 164 (2001), 144176.CrossRefGoogle Scholar
Dugger, D., Hollander, S. and Isaksen, D. C., Hypercovers and simplicial presheaves, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 136 (Cambridge University Press, 2004), 951.Google Scholar
Dugger, D. and Isaksen, D. C., Hypercovers in topology, Preprint (2001), arXiv:math/0111287.Google Scholar
Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011), 223274.CrossRefGoogle Scholar
Efimov, A. I., Cyclic homology of categories of matrix factorizations, Preprint (2012),arXiv:1212.2859.Google Scholar
Esnault, H. and Viehweg, E., Deligne–Beilinson cohomology (Max-Planck-Institut für Mathematik, 1987).Google Scholar
Freed, D. S., Remarks on Chern–Simons theory, Bull. Amer. Math. Soc. (N.S.) 46 (2009), 221254.CrossRefGoogle Scholar
Friedlander, E. M. and Mazur, B., Filtrations on the homology of algebraic varieties, Memoirs of the American Mathematical Society, vol. 529 (American Mathematical Society, Providence, RI, 1994).Google Scholar
Friedlander, E. and Walker, M., Comparing K-theories for complex varieties, Amer. J. Math. (2001), 779810.CrossRefGoogle Scholar
Friedlander, E. and Walker, M., Rational isomorphisms between K-theories and cohomology theories, Invent. Math. 154 (2003), 161.CrossRefGoogle Scholar
Friedlander, E. and Walker, M., Semi-topological K-theory, in Handbook of K-theory, eds Friedlander, E. and Grayson, D. R. (Springer, Berlin, 2005), 877924.CrossRefGoogle Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian intersection Floer theory (American Mathematical Society, Providence, RI, 2000).Google Scholar
Goodwillie, T. G., Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), 187215.CrossRefGoogle Scholar
Haesemeyer, C., Descent properties of homotopy K-theory, Duke Math. J. 125 (2004), 589619.CrossRefGoogle Scholar
Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero: II, Ann. of Math. (2) 79 (1964), 205326.CrossRefGoogle Scholar
Hironaka, H., Triangulations of algebraic sets, in Algebraic geometry (Proceedings of Symposia in Pure Mathematics, Vol. 29, Humboldt State University, Arcata, California, 1974) (American Mathematical Society, Providence, RI, 1975), 165185.Google Scholar
Hirschhorn, P. S., Model categories and their localizations (American Mathematical Society, Providence, RI, 2009).CrossRefGoogle Scholar
Hochschild, G., Kostant, B. and Rosenberg, A., Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383408.CrossRefGoogle Scholar
Hovey, M., Monoidal model categories, Preprint (1998), arXiv:math/9803002.Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Hovey, M., Model category structures on chain complexes of sheaves, Trans. Amer. Math. Soc. 353 (2001), 24412457.CrossRefGoogle Scholar
Hovey, M., Shipley, B. and Smith, J., Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149208.CrossRefGoogle Scholar
Jardine, J. F., Simplical presheaves, J. Pure Appl. Algebra 47 (1987), 3587.CrossRefGoogle Scholar
Kaledin, D., Motivic structures in non-commutative geometry, in Proceedings of the International Congress of Mathematicians 2010 (Hindustan Book Agency, New Delhi, 2011), 461496.CrossRefGoogle Scholar
Kassel, C., Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), 195216.CrossRefGoogle Scholar
Katzarkov, L., Kontsevich, M. and Pantev, T., Hodge theoretic aspects of mirror symmetry, Preprint (2008), arXiv:0806.0107.Google Scholar
Katzarkov, L., Pantev, T. and Toën, B., Algebraic and topological aspects of the schematization functor, Compositio Math. 145 (2009), 633686.CrossRefGoogle Scholar
Keller, B., Invariance and localization for cyclic homology of dg algebras, J. Pure Appl. Algebra 123 (1998), 223273.CrossRefGoogle Scholar
Keller, B., On the cyclic homology of ringed spaces and schemes, Doc. Math 3 (1998), 231259.Google Scholar
Keller, B., On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), 156.CrossRefGoogle Scholar
Keller, B., Cluster algebras, quiver representations and triangulated categories, Preprint (2008), arXiv:0807.1960.Google Scholar
Kontsevich, M., Deformation quantization of algebraic varieties, Lett. Math. Phys. 56 (2001), 271294.CrossRefGoogle Scholar
Krause, H., Representations of quivers via reflection functors, Preprint (2008),arXiv:0804.1428.Google Scholar
Loday, J.-L., Cyclic homology, Grundlehren der mathematischen Wissenschaften, vol. 301 (Springer, Berlin, 1998).CrossRefGoogle Scholar
Lurie, J., Higher topos theory (Princeton University Press, Princeton, NJ, 2009).Google Scholar
Marcolli, M. and Tabuada, G., Jacobians of noncommutative motives, Preprint (2012),arXiv:1212.1118.Google Scholar
Morel, F. and Voevodsky, V., A1-homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45143.CrossRefGoogle Scholar
Orlov, D. O., Derived categories of coherent sheaves and equivalences between them, Russian Math. Surveys 58 (2003), 511591.CrossRefGoogle Scholar
Orlov, D. O., Derived categories of coherent sheaves and triangulated categories of singularities, Preprint (2005), arXiv:math/0503632.Google Scholar
Quillen, D., Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Mathematics, vol. 341 (Springer, Berlin, 1973), 85147.Google Scholar
Riou, J., Dualité de Spanier–Whitehead en géométrie algébrique, C. R. Math. 340 (2005), 431436.CrossRefGoogle Scholar
Robalo, M., Noncommutative motives I: A universal characterization of the motivic stable homotopy theory of schemes, Preprint (2012), arXiv:1206.3645.Google Scholar
Robalo, M., Noncommutative motives II: K-theory and noncommutative motives, Preprint (2013), arXiv:1306.3795.Google Scholar
Rosenberg, J., Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147 (Springer, New York, 1994).CrossRefGoogle Scholar
Schapira, P., Deformation quantization modules on complex symplectic manifolds, in Poisson geometry in mathematics and physics, Contemporary Mathematics, vol. 450 (American Mathematical Society, Providence, RI, 2008), 259271; MR 2397629 (2009f:53150).CrossRefGoogle Scholar
Schlichting, M., Negative K-theory of derived categories, Math. Z. 253 (2006), 97134.CrossRefGoogle Scholar
Schwede, S., An untitled book project about symmetric spectra, available at: http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf.Google Scholar
Schwede, S. and Shipley, B. E., Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3) 80 (2000), 491511.CrossRefGoogle Scholar
Schwede, S. and Shipley, B. E., Stable model categories are categories of modules, Topology 42 (2003), 103153.CrossRefGoogle Scholar
Segal, G., Categories and cohomology theories, Topology 13 (1974), 293312.CrossRefGoogle Scholar
Seidel, P., Fukaya categories and Picard–Lefschetz theory, Advances in Mathematics (European Mathematical Society, Zürich, 2008).CrossRefGoogle Scholar
Artin, M., Grothendieck, A. and Verdier, J. L., Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier, avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.Google Scholar
Simpson, C., The topological realization of a simplicial presheaf, Preprint (1996),arXiv:q-alg/9609004.Google Scholar
Suslin, A. and Voevodsky, V., Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), 6194.CrossRefGoogle Scholar
Tabuada, G., Théorie homotopique des dg-catégories, PhD thesis, Preprint (2007),arXiv:0710.4303v1 [math.KT].Google Scholar
Tabuada, G., Higher K-theory via universal invariants, Duke Math. J. 145 (2008), 121206.CrossRefGoogle Scholar
Tabuada, G., Products, multiplicative Chern characters, and finite coefficients via noncommutative motives, J. Pure Appl. Algebra 217 (2013), 12791293.CrossRefGoogle Scholar
Thomason, R. W., Algebraic K-theory and étale cohomology, Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 437552.CrossRefGoogle Scholar
Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, 1990), 247435.CrossRefGoogle Scholar
Toën, B., Vers une interprétation galoisienne de la théorie de l’homotopie, Cah. Topol. Géom. Différ. Catég. 43 (2002), 257312.Google Scholar
Toën, B., Derived Hall algebras, Duke Math. J. 135 (2006), 587615.CrossRefGoogle Scholar
Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (2007), 615667.CrossRefGoogle Scholar
B. Toën, Lectures on saturated $dg$-categories (handwritten notes by D. Auroux)http://www-math.mit.edu/∼auroux/frg/miami10-notes, January 2010.Google Scholar
Toën, B. and Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387444.CrossRefGoogle Scholar
Toën, B. and Vezzosi, G., Homotopical algebraic geometry I: Topos theory, Adv. Math. 193(902) (2005), 257372.CrossRefGoogle Scholar
Toën, B. and Vezzosi, G., Homotopical algebraic geometry II: Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008).Google Scholar
Toën, B. and Vezzosi, G., Caractères de Chern, traces équivariantes et géométrie algébrique dérivée, Preprint (2009), arXiv:0903.3292.Google Scholar
Tsygan, B., On the Gauss–Manin connection in cyclic homology, Methods Funct. Anal. Topology 13 (2007), 8394.Google Scholar
Weibel, C., Cyclic homology for schemes, Proc. Amer. Math. Soc. 124 (1996), 16551662.CrossRefGoogle Scholar
Weibel, C., The Hodge filtration and cyclic homology, J. K-Theory 12 (1997), 145164.CrossRefGoogle Scholar
You have Access
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Topological K-theory of complex noncommutative spaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Topological K-theory of complex noncommutative spaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Topological K-theory of complex noncommutative spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *