Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-n7x5d Total loading time: 0.236 Render date: 2021-11-29T06:15:41.467Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Reciprocity sheaves

Published online by Cambridge University Press:  14 July 2016

Bruno Kahn
Affiliation:
IMJ-PRG, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France email bruno.kahn@imj-prg.fr
Shuji Saito
Affiliation:
Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro, Tokyo 152-8551, Japan email sshuji@msb.biglobe.ne.jp
Takao Yamazaki
Affiliation:
Institute of Mathematics, Tohoku University, Aoba, Sendai 980-8578, Japan email ytakao@math.tohoku.ac.jp
Kay Rülling
Affiliation:
Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany email kay.ruelling@fu-berlin.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We start developing a notion of reciprocity sheaves, generalizing Voevodsky’s homotopy invariant presheaves with transfers which were used in the construction of his triangulated categories of motives. We hope that reciprocity sheaves will eventually lead to the definition of larger triangulated categories of motivic nature, encompassing non-homotopy invariant phenomena.

Type
Research Article
Copyright
© The Authors 2016 

References

Barbieri-Viale, L. and Kahn, B., On the derived category of 1 motives , Astérisque 381 (2016), 1254.Google Scholar
Binda, F. and Saito, S., Relative cycles with moduli and regulator maps, Preprint (2014),arXiv:1412.0385.Google Scholar
Bourbaki, N., Algèbre commutative (Masson, Paris, 1985).Google Scholar
Chatzistamatiou, A. and Rülling, K., Higher direct images of the structure sheaf in positive characteristic , Algebra Number Theory 5 (2011), 693775.CrossRefGoogle Scholar
Chatzistamatiou, A. and Rülling, K., Hodge–Witt cohomology and Witt-rational singularities , Doc. Math. 17 (2012), 663781.Google Scholar
Colliot-Thélène, J.-L., Hoobler, R. and Kahn, B., The Bloch–Ogus–Gabber theorem, Fields Institute Communications, vol. 16 (American Mathematical Society, Providence, RI, 1997), 3194.Google Scholar
Colliot-Thélène, J. L., Sansuc, J.-J. and Soulé, C., Torsion dans le groupe de Chow de codimension deux , Duke Math. J. 50 (1983), 763801.CrossRefGoogle Scholar
Déglise, F., Finite correspondences and transfers over a regular base , in Algebraic cycles and motives, vol. 1, London Mathematical Society Lecture Note Series, vol. 343, eds Nagel, J. and Peters, C. (Cambridge University Press, Cambridge, 2007), 138205.CrossRefGoogle Scholar
Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: étude globale élémentaire de quelques classes de morphismes , Publ. Math. Inst. Hautes Études Sci. 8 (1961), 5222.Google Scholar
Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: étude locale des schémas et des morphismes de schémas (quatrième partie) , Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5361.Google Scholar
Ekedahl, T., On the multiplicative properties of the de Rham–Witt complex I , Ark. Mat. 22 (1984), 185239.CrossRefGoogle Scholar
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 2 (Springer, Berlin, 1998).CrossRefGoogle Scholar
Grayson, D., Universal exactness in algebraic K-theory , J. Pure Appl. Algebra 36 (1985), 139141.CrossRefGoogle Scholar
Gros, M., Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique , Mém. Soc. Math. Fr. (N.S.) 21 (1985), 187.Google Scholar
Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline , Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 501661.CrossRefGoogle Scholar
Ivorra, F. and Rülling, K., $K$ -groups of reciprocity functors, J. Algebraic Geom., to appear, Preprint (2012), arXiv:1209.1217.Google Scholar
Kahn, B., Foncteurs de Mackey à réciprocité, Preprint (1991), arXiv:1210.7577.Google Scholar
Kerz, M. and Saito, S., Chow group of 0-cycles with modulus and higher dimensional class field theory, Duke Math. J., to appear, Preprint (2011), arXiv:1304.4400.Google Scholar
Mazza, C., Voevodsky, V. and Weibel, C., Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2 (American Mathematical Society, Providence, RI, 2006); Clay Mathematics Institute, Cambridge, MA.Google Scholar
Rülling, K., The generalized de Rham–Witt complex over a field is a complex of zero-cycles , J. Algebraic Geom. 16 (2007), 109169.CrossRefGoogle Scholar
Russell, H., Albanese varieties with modulus over a perfect field , Algebra Number Theory 7 (2013), 853892.CrossRefGoogle Scholar
Serre, J.-P., Groupes algébriques et corps de classes (Hermann, Paris, 1959).Google Scholar
Spiess, M. and Szamuely, T., On the Albanese map for smooth quasiprojective varieties , Math. Ann. 235 (2003), 117.CrossRefGoogle Scholar
Suslin, A. and Voevodsky, V., Singular homology of abstract algebraic varieties , Invent. Math. 123 (1996), 6194.CrossRefGoogle Scholar
Suslin, A. and Voevodsky, V., Relative cycles and Chow sheaves , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 1085.Google Scholar
Voevodsky, V., Cohomological theory of presheaves with transfers , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 87137.Google Scholar
Voevodsky, V., Triangulated categories of motives over a field , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 188238.Google Scholar
You have Access
10
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reciprocity sheaves
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reciprocity sheaves
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reciprocity sheaves
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *