Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T14:52:59.315Z Has data issue: false hasContentIssue false

Mirković–Vilonen polytopes and Khovanov–Lauda–Rouquier algebras

Published online by Cambridge University Press:  22 June 2016

Peter Tingley
Affiliation:
Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA email ptingley@luc.edu
Ben Webster
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA, USA email bwebster@virginia.edu

Abstract

We describe how Mirković–Vilonen (MV) polytopes arise naturally from the categorification of Lie algebras using Khovanov–Lauda–Rouquier (KLR) algebras. This gives an explicit description of the unique crystal isomorphism between simple representations of KLR algebras and MV polytopes. MV polytopes, as defined from the geometry of the affine Grassmannian, only make sense in finite type. Our construction on the other hand gives a map from the infinity crystal to polytopes for all symmetrizable Kac–Moody algebras. However, to make the map injective and have well-defined crystal operators on the image, we must in general decorate the polytopes with some extra information. We suggest that the resulting ‘KLR polytopes’ are the general-type analogues of MV polytopes. We give a combinatorial description of the resulting decorated polytopes in all affine cases, and show that this recovers the affine MV polytopes recently defined by Baumann, Kamnitzer, and the first author in symmetric affine types. We also briefly discuss the situation beyond affine type.

Type
Research Article
Copyright
© The Authors 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J., A polytope calculus for semisimple groups , Duke Math. J. 116 (2003), 567588.CrossRefGoogle Scholar
Baumann, P., Dunlap, T., Kamnitzer, J. and Tingley, P., Rank 2 affine MV polytopes , Represent. Theory 17 (2013), 442468.CrossRefGoogle Scholar
Baumann, P. and Kamnitzer, J., Preprojective algebras and MV polytopes , Represent. Theory 16 (2012), 152188.CrossRefGoogle Scholar
Baumann, P., Kamnitzer, J. and Tingley, P., Affine Mirković–Vilonen polytopes , Publ. Math. Inst. Hautes Études Sci. 120 (2014), 113205.CrossRefGoogle Scholar
Beck, J. and Nakajima, H., Crystal bases and two-sided cells of quantum affine algebras , Duke Math. J. 123 (2004), 335402.CrossRefGoogle Scholar
Berenstein, A. and Zelevinsky, A., String bases for quantum groups of type A r , Advances in Soviet Mathematics, vol. 16, I. M. Gel’fand Seminar (American Mathematical Society, Providence, RI, 1993), 5189.Google Scholar
Borcherds, R. E., Central extensions of generalized Kac–Moody algebras , J. Algebra 140 (1991), 330335.CrossRefGoogle Scholar
Brundan, J. and Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras , Invent. Math. 178 (2009), 451484.CrossRefGoogle Scholar
Carnahan, S., Is the centralizer of a torus in a Kac–Moody algebra always a Borcherds algebra?, http://mathoverflow.net/questions/94595.Google Scholar
Dunlap, T., Combinatorial representation theory of affine $\mathfrak{sl}(2)$ via polytope calculus, PhD thesis, Northwestern University (2010).Google Scholar
Gel’fand, I. M., Goresky, R. M., MacPherson, R. D. and Serganova, V. V., Combinatorial geometries, convex polyhedra, and Schubert cells , Adv. Math. 63 (1987), 301316; MR 877789 (88f:14045).CrossRefGoogle Scholar
Hong, J. and Kang, S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42 (American Mathematical Society, Providence, RI, 2002).CrossRefGoogle Scholar
Ito, K., The classification of convex orders on affine root systems , Comm. Algebra 29 (2001), 56055630.CrossRefGoogle Scholar
Kac, V. G., Infinite-dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Kamnitzer, J., The crystal structure on the set of Mirković–Vilonen polytopes , Adv. Math. 215 (2007), 6693.CrossRefGoogle Scholar
Kamnitzer, J., Mirković–Vilonen cycles and polytopes , Ann. of Math. (2) 171 (2010), 245294.CrossRefGoogle Scholar
Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II , Duke Math. J. 164 (2015), 15491602.CrossRefGoogle Scholar
Kang, S.-J., Oh, S.-J. and Park, E., Categorification of quantum generalized Kac–Moody algebras and crystal bases , Internat. J. Math. 23 (2012), 1250116, 51 pp.CrossRefGoogle Scholar
Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula , Duke Math. J. 71 (1993), 839858.CrossRefGoogle Scholar
Kashiwara, M., On crystal bases , in Representations of groups (Banff, AB, 1994), CMS Conference Proceedings, vol. 16 (American Mathematical Society, Providence, RI, 1995), 155197.Google Scholar
Kashiwara, M., Notes on parameters of quiver Hecke algebras , Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 97102.CrossRefGoogle Scholar
Kashiwara, M. and Saito, Y., Geometric construction of crystal bases , Duke Math. J. 89 (1997), 936.CrossRefGoogle Scholar
Kato, S., Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras , Duke Math. J. 163 (2014), 619663; MR 3165425.CrossRefGoogle Scholar
Khovanov, M. and Lauda, A. D., A diagrammatic approach to categorification of quantum groups. I , Represent. Theory 13 (2009), 309347.CrossRefGoogle Scholar
Khovanov, M. and Lauda, A. D., A diagrammatic approach to categorification of quantum groups II , Trans. Amer. Math. Soc. 363 (2011), 26852700.CrossRefGoogle Scholar
Kleshchev, A. S., Cuspidal systems for affine Khovanov–Lauda–Rouquier algebras , Math. Z. 276 (2014), 691726.CrossRefGoogle Scholar
Kleshchev, A. and Muth, R., Imaginary Schur–Weyl duality, Preprint (2013), arXiv:1312.6104.Google Scholar
Kleshchev, A. and Ram, A., Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words , Math. Ann. 349 (2011), 943975.CrossRefGoogle Scholar
Lauda, A. D. and Vazirani, M., Crystals from categorified quantum groups , Adv. Math. 228 (2011), 803861.CrossRefGoogle Scholar
Lusztig, G., Braid group action and canonical bases , Adv. Math. 122 (1996), 237261.CrossRefGoogle Scholar
McNamara, P. J., Representations of Khovanov–Lauda–Rouquier algebras III: symmetric affine type, Preprint (2014), arXiv:1407.7304.Google Scholar
McNamara, P. J., Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type , J. reine angew. Math. 707 (2015), 103124; MR 3403455.CrossRefGoogle Scholar
McNamara, P. J. and Tingley, P., Face functors for KLR algebras, Preprint (2015),arXiv:1512.04458.Google Scholar
Mirković, I. and Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings , Ann. of Math. (2) 166 (2007), 95143.CrossRefGoogle Scholar
Muthiah, D. and Tingley, P., Affine PBW bases and MV polytopes in rank 2 , Selecta Math. (N.S.) 20 (2014), 237260.CrossRefGoogle Scholar
Rouquier, R., 2-Kac–Moody algebras, Preprint (2008), arXiv:0812.5023.Google Scholar
Saito, Y., PBW basis of quantized universal enveloping algebras , Publ. Res. Inst. Math. Sci. 30 (1994), 209232.CrossRefGoogle Scholar
Varagnolo, M. and Vasserot, E., Canonical bases and KLR-algebras , J. reine angew. Math. 659 (2011), 67100.Google Scholar
Webster, B., Knot invariants and higher representation theory, Mem. Amer. Math. Soc., to appear; arXiv:1309.3796.Google Scholar