Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T03:05:36.929Z Has data issue: false hasContentIssue false

A boundedness theorem for nearby slopes of holonomic ${\mathcal{D}}$ -modules

Published online by Cambridge University Press:  09 September 2016

Jean-Baptiste Teyssier*
Affiliation:
Hebrew University of Jerusalem, Einstein Institute for Mathematics, Givat Ram, Jerusalem, Israel email teyssier@zedat.fu-berlin.de

Abstract

Using twisted nearby cycles, we define a new notion of slopes for complex holonomic ${\mathcal{D}}$ -modules. We prove a boundedness result for these slopes, study their functoriality and use them to characterize regularity. For a family of (possibly irregular) algebraic connections ${\mathcal{E}}_{t}$ parametrized by a smooth curve, we deduce under natural conditions an explicit bound for the usual slopes of the differential equation satisfied by the family of irregular periods of the ${\mathcal{E}}_{t}$ . This generalizes the regularity of the Gauss–Manin connection proved by Griffiths, Katz and Deligne.

Type
Research Article
Copyright
© The Author 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aroca, J.-M., Hironaka, H. and Vicente, J.-L., Desingularization theorems , Mem. Mat. Inst. Jorge Juan 29 (1975).Google Scholar
Bloch, S. and Esnault, H., Homology for irregular connections , J. Theór. Nombres Bordeaux 16 (2004), 357371.CrossRefGoogle Scholar
Bierstone, E. and Milman, P., Uniformization of analytic spaces , J. Amer. Math. Soc. 2 (1989), 801836.Google Scholar
Castro, P. and Sabbah, C., Sur les pentes d’un ${\mathcal{D}}$ -module le long d’une hypersurface. Preprint (1989).Google Scholar
Deligne, P., Equations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 163 (Springer, 1970).Google Scholar
Deligne, P., Lettre à Malgrange. 20 décembre 1983 , in Singularités irrégulières, Documents Mathématiques, vol. 5 (Société Mathématique de France, Paris, 2007), 3741.Google Scholar
Deligne, P., Letter to V. Drinfeld, June 2011. Detailed account available in: H. Esnault and M. Kerz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne) , Acta Math. Vietnam 37 (2012), 531562.Google Scholar
Dimca, A., Maaref, F., Sabbah, C. and Saito, M., Dwork cohomology and algebraic D-modules , Math. Ann. 378 (2000), 107125.Google Scholar
Griffiths, P. A., Periods of integrals on algebraic manifolds I, II , Amer. J. Math. 90 (1968), 460–495, 496–541.Google Scholar
Grothendieck, A., On the de Rham cohomology of algebraic varieties , Publ. Math. Inst. Hautes Études Sci. 29 (1966), 95103.Google Scholar
Hien, M., Periods for irregular singular connections on surfaces , Math. Ann. 337 (2007), 631669.Google Scholar
Hien, M., Periods for flat algebraic connections , Invent. Math. 178 (2009), 122.Google Scholar
Hien, M. and Roucairol, C., Integral representations for solutions of exponential Gauss–Manin systems , Bull. Soc. Math. France 136 (2008), 505532.Google Scholar
Hotta, R., Takeuchi, K. and Tanisaki, T., D-Modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236 (Birkhäuser, 2000).Google Scholar
Kashiwara, M., On the maximally overdetermined systems of linear differential equations I , Publ. Res. Inst. Math. Sci. 10 (1975), 563579.Google Scholar
Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations , in Algebraic geometry, Lecture Notes in Mathematics, vol. 1016 (Springer, 1983).Google Scholar
Kashiwara, M. and Kawai, T., On holonomic systems of micro-differential equations , Publ. Res. Inst. Math. Sci. 17 (1981), 813979.Google Scholar
Katz, N., Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin , Publ. Math. Inst. Hautes Études Sci. 39 (1970), 175232.Google Scholar
Katz, N. and Oda, T., On the differentiation of De Rham cohomology classes with respect to parameters , J. Math. Kyoto Univ. 8 (1968), 199213.Google Scholar
Kedlaya, K., Good formal structures for flat meromorphic connections I: Surfaces , Duke Math. J. 154 (2010), 343418.Google Scholar
Kedlaya, K., Good formal structures for flat meromorpohic connexions II: Excellent schemes , J. Amer. Math. Soc. 24 (2011), 183229.Google Scholar
Laurent, Y., Polygone de Newton et b-fonctions pour les modules micro-différentiels , Ann. Sci. Éc. Norm. Supér. 20 (1987), 391441.Google Scholar
Laurent, Y. and Mebkhout, Z., Pentes algébriques et pentes analytiques d’un D-module , Ann. Sci. Éc. Norm. Supér. 32 (1999), 3969.Google Scholar
Maisonobe, P. and Mebkhout, Z., Le théorème de comparaison pour les cycles évanescents , in Èléments de la théorie des systèmes différentiels géométriques, Cours du C.I.M.P.A., Séminaires et Congrès, vol. 8 (Société Mathématique de France, Paris, 2004), 311389.Google Scholar
Malgrange, B., Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque, vols 101–102 (Société Mathématique de France, 1983), 233–267.Google Scholar
Malgrange, B., Connexions méromorphes 2: Le réseau canonique , Invent. Math. 124 (1996), 367387.Google Scholar
Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, second edition (Benjamin/Cummings, 1980).Google Scholar
Mebkhout, Z., Cohomologie locale des espaces analytiques complexes, PhD thesis, University Paris VII (1979).Google Scholar
Mebkhout, Z., Le théorème de positivité de l’irrégularité pour les D X -modules , in The Grothendieck Festschrift III, Progress in Mathematics, vol. 88 (Birkhäuser, 1990), 83132.Google Scholar
Mebkhout, Z., Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann , in Èléments de la théorie des systèmes différentiels géométriques, Cours du C.I.M.P.A., Séminaires et Congrès, vol. 8 (Société Mathématique de France, 2004), 165310.Google Scholar
Mebkhout, Z. and Sabbah, C., Le formalisme des six opérations de Grothendieck pour lesD-modules cohérents, Travaux en cours, vol. 35 (Hermann, Paris, 1989).Google Scholar
Mochizuki, T., Good formal structure for meromorphic flat connections on smooth projective surfaces , in Algebraic analysis and around in honor of Professor Masaki Kashiwara’s 60th birthday (Mathematical Society of Japan, Tokyo, 2009), 223253.Google Scholar
Mochizuki, T., The Stokes structure of a good meromorphic flat bundle , J. Inst. Math. Jussieu 10 (2011), 675712.Google Scholar
Mochizuki, T., Wild harmonic bundles and wild pure twistor D-modules, Astérisque, vol. 340 (Société Mathématique de France, 2011).Google Scholar
Sabbah, C., Equations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, vol. 263 (Société Mathématique de France, 2000).Google Scholar
Sabbah, C., Polarizable twistor D-modules, Astérisque, vol. 300 (Société Mathématique de France, 2005), 309330.Google Scholar
Sabbah, C., An explicit stationary phase formula for the local formal Fourier–Laplace transform , in Singularities, vol. 1, Contemporary Mathematics, vol. 474 (American Mathematical Society, Providence, RI, 2008), 309330.Google Scholar
Serre, J. P., Géométrie algébrique et géométrie analytique , Ann. Inst. Fourier (Grenoble) 6 (1956), 142.Google Scholar
Singer, M. T. and van der Put, M., Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften, vol. 328 (Springer, 2000).Google Scholar
Teyssier, J.-B., Nearby slopes and boundedness for $\ell$ -adic sheaves in positive characteristic. Preprint (2015), http://jbteyssier.com/papers/jbteyssier_ladicNearbySlopes.pdf.Google Scholar
Teyssier, J.-B., Vers une catégorie de D-modules holonomes d’irrégularité bornée , in Program for the application to CNRS (2015).Google Scholar
Teyssier, J.-B., Sur une caractérisation des D-modules holonomes réguliers , Math. Res. Lett. 23 (2016), 273302.Google Scholar
Verdier, J.-L., Spécialisation de faisceaux et monodromie modérée, Astérisque, vols 101–102 (Société Mathématique de France, 1983), 332364.Google Scholar