Hostname: page-component-cd4964975-ppllx Total loading time: 0 Render date: 2023-03-28T00:30:43.408Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A Two-Stage Fourth-Order Gas-Kinetic Scheme for Compressible Multicomponent Flows

Published online by Cambridge University Press:  28 July 2017

Liang Pan*
Institute of Applied Physics and Computational Mathematics, Beijing, China
Junxia Cheng*
Institute of Applied Physics and Computational Mathematics, Beijing, China
Shuanghu Wang*
Institute of Applied Physics and Computational Mathematics, Beijing, China
Kun Xu*
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
*Corresponding author. Email (L. Pan), (J. X. Cheng), (S. H. Wang), (K. Xu)
*Corresponding author. Email (L. Pan), (J. X. Cheng), (S. H. Wang), (K. Xu)
*Corresponding author. Email (L. Pan), (J. X. Cheng), (S. H. Wang), (K. Xu)
*Corresponding author. Email (L. Pan), (J. X. Cheng), (S. H. Wang), (K. Xu)
Get access


With the use of temporal derivative of flux function, a two-stage temporal discretization has been recently proposed in the design of fourth-order schemes based on the generalized Riemann problem (GRP) [21] and gas-kinetic scheme (GKS) [28]. In this paper, the fourth-order gas-kinetic scheme will be extended to solve the compressible multicomponent flow equations, where the two-stage temporal discretization and fifth-order WENO reconstruction will be used in the construction of the scheme. Based on the simplified two-species BGK model [41], the coupled Euler equations for individual species will be solved. Each component has its individual gas distribution function and the equilibrium states for each component are coupled by the physical requirements of total momentum and energy conservation in particle collisions. The second-order flux function is used to achieve the fourth-order temporal accuracy, and the robustness is as good as the second-order schemes. At the same time, the source terms, such as the gravitational force and the chemical reaction, will be explicitly included in the two-stage temporal discretization through their temporal derivatives. Many numerical tests from the shock-bubble interaction to ZND detonative waves are presented to validate the current approach.

Research Article
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations, Aquasi conservative approach. J. Comput. Phys. 125 (1996) 150160.CrossRefGoogle Scholar
[2] Abgrall, R., Karni, S., Computations of compressible multifluids, J. Comput. Phys. 169 (2001) 594623.CrossRefGoogle Scholar
[3] Andries, P., Aoki, K., and Perthame, B., A Consistent BGK-type Model for Gas Mixtures, Journal of Statistical Physics, 106 (2002) 9931018.CrossRefGoogle Scholar
[4] Bourlioux, A., Numerical Study of Unsteady Detonations, Ph.D. thesis, Princeton University, (1991).Google Scholar
[5] Cockburn, B., Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, 52 (1989), 411435.Google Scholar
[6] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. Comput. Phys. 152 (1999) 457492.CrossRefGoogle Scholar
[7] Fickett, W., Davis, W. C., Detonation, University of California Press, Berkeley, (1979).Google Scholar
[8] Fickett, W., Wood, W.W., Flow calculations for pulsating one-dimensional detonations, Phys. Fluids 9 (1966) 903.CrossRefGoogle Scholar
[9] Galera, S., Maire, P. H., Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys. 229 (2010) 57555787.CrossRefGoogle Scholar
[10] Gottlieb, S., Shu, C. W., Total variation diminishing runge-kutta schemes, Mathematics of computation, 67 (1998) 7385.CrossRefGoogle Scholar
[11] Guo, Z.L., Xu, K., Wang, R.J., Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case, Physical Review E, 88 (2013) 033305.CrossRefGoogle ScholarPubMed
[12] Harten, A., Engquist, B., Osher, S. and Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (1987) 231303.CrossRefGoogle Scholar
[13] Haas, J.F., Strurtevant, B., Interactions of a shock waves with cylindrical and spherical gas inhomogeneites. J. Fluid Mech. 181 (1987) 4176.CrossRefGoogle Scholar
[14] Jiang, S., Ni, G.X., A γ-model BGK scheme for compressible multifluids, Int. J. Numer. Meth. Fluid 46 (2004) 163182 CrossRefGoogle Scholar
[15] Jiang, S., Ni, G.X., A second order γ-model BGK scheme for multifluids compressible flows. Applied numerical mathematics 57 (2007) 597608.CrossRefGoogle Scholar
[16] Jiang, G.S., Shu, C.W., Efficient implementation of Weighted ENO schemes, J. Comput. Phys. 126 (1996) 202228.CrossRefGoogle Scholar
[17] Karni, S., Multicomponent flow calculations by a consistent premitive algorithm, J. Comput. Phys 128 (1994) 237253.Google Scholar
[18] Kotelnikov, A.D., Montgomery, D.C., A Kinetic Method for Computing Inhomogeneous Fluid Behavior, J. Comput. Phys. 134 (1997) 364388.CrossRefGoogle Scholar
[19] Kucharik, M., Garimella, R.V., Schofield, S.P., Shashkov, M.J., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys. 229 (2010) 24322452.CrossRefGoogle Scholar
[20] Larrouturou, B., How to Preserve the Mass Fraction Positive When Computing Compressible Multi-component Flow, J. Comput. Phys. 95 (1991) 5984.CrossRefGoogle Scholar
[21] Li, J., Du, Z., A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. hyperbolic conservation laws, SIAM J. Sci. Computing, 38 (2016) 30463069.CrossRefGoogle Scholar
[22] Li, Q., Xu, K., Fu, S., A high-order gas-kinetic Navier-Stokes flow solver, J. Comput. Phys. 229 (2010) 67156731.CrossRefGoogle Scholar
[23] Lian, Y. S., Xu, K., A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reactions, J. Comput. Phys. 163 (2000) 349375.CrossRefGoogle Scholar
[24] Liu, N., Tang, H.Z., A high-order accurate gas-kinetic scheme for one- and two-dimensional flow simulation, Commun. Comput. Phys. 15 (2014) 911943.CrossRefGoogle Scholar
[25] Luo, J., Xu, K., A high-order multidimensional gas-kinetic scheme for hydrodynamic equations, SCIENCE CHINA Technological Sciences, 56 (2013) 23702384.CrossRefGoogle Scholar
[26] Mieussens, L., On the asymptotic preserving property of the unified gas-kinetic scheme for the diffusion limit of linear kinetic models, J. Comput. Phys. 253 (2013) 138156.CrossRefGoogle Scholar
[27] Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., Fujii, K., Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme, J. Comput.Phys. 231 (2012) 31813210.CrossRefGoogle Scholar
[28] Pan, L., Xu, K., Li, Q., Li, J., An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Navier-Stokes equations, J. Comput. Phys. 326 (2016) 197221.CrossRefGoogle Scholar
[29] Ren, X.D., Xu, K., Shyy, W., Gu, C.W., A multi-dimensional high-order discontinuous Galerkin-method based on gas kinetic theory for viscous flow computations, J. Comput. Phys. 292 (2015) 176193.CrossRefGoogle Scholar
[30] Osher, S., Fedkiw, R.P., Level set methods: An overview and some recent results, J. Comput. Phys. 169 (2001) 463502.CrossRefGoogle Scholar
[31] Quirk, J.J., Karni, S., On the dynamics of a shock bubble interaction, J. Fluid Mech. 318 (1996) 129163.CrossRefGoogle Scholar
[32] Reed, W.H., Hill, T.R., Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, 1973, Los Alamos Scientific Laboratory, Los Alamos.Google Scholar
[33] Shyue, K.M., F. Xiao An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, J. Comput. Phys. 231 (2012) 4304C4323Google Scholar
[34] So, K.K., Hu, X.Y., Adams, N.A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Fluid Mechanics, 269, (1994), 4578.Google Scholar
[35] Saurel, R., Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (1999) 11151145.CrossRefGoogle Scholar
[36] Saurel, R., Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999) 425467.CrossRefGoogle Scholar
[37] Shi, J., Zhang, Y. T., Shu, C.W., Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys. 186 (2003) 690696.CrossRefGoogle Scholar
[38] Terashima, H., Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys. 228 (2009) 40124037.CrossRefGoogle Scholar
[39] Terashima, H., Tryggvason, G., A front-tracking method with projected interface conditions for compressible multi-fluid flows, Computers & Fluids 39 (2010) 18041814.CrossRefGoogle Scholar
[40] Wang, R., Unified Gas-kinetic Scheme for the Study of Non-equilibrium Flows, PhD theisi, HKUST, (2015).Google Scholar
[41] Xu, K., BGK-based scheme formulticomponent flow calculations, J. Comput. Phys. 134 (1997) 122133.CrossRefGoogle Scholar
[42] Xu, K., Direct modeling for computational fluid dynamics: construction and application of unfied gas kinetic schemes, World Scientific (2015).Google Scholar
[43] Xu, K., A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171 (2001) 289335.CrossRefGoogle Scholar
[44] Xu, K., Huang, J., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 229 (2010) 77477764.CrossRefGoogle Scholar