Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-wb78c Total loading time: 0.222 Render date: 2021-06-23T13:02:48.586Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Simulation of Wave-Flow-Cavitation Interaction Using a Compressible Homogenous Flow Method

Published online by Cambridge University Press:  03 June 2015

J. G. Zheng
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Singapore 119260
B. C. Khoo
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Singapore 119260 Singapore-MIT Alliance, National University of Singapore, Singapore 117576 Temasek Laboratories, National University of Singapore, Singapore 117411
Z. M. Hu
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
Corresponding
Get access

Abstract

A numerical method based on a homogeneous single-phase flow model is presented to simulate the interaction between pressure wave and flow cavitation. To account for compressibility effects of liquid water, cavitating flow is assumed to be compressible and governed by time-dependent Euler equations with proper equation of state (EOS). The isentropic one-fluid formulation is employed to model the cavitation inception and evolution, while pure liquid phase is modeled by Tait equation of state. Because of large stiffness of Tait EOS and great variation of sound speed in flow field, some of conventional compressible gasdynamics solvers are unstable and even not applicable when extended to calculation of flow cavitation. To overcome the difficulties, a Godunov-type, cell-centered finite volume method is generalized to numerically integrate the governing equations on triangular mesh. The boundary is treated specially to ensure stability of the approach. The method proves to be stable, robust, accurate, time-efficient and oscillation-free.

Novel numerical experiments are designed to investigate unsteady dynamics of the cavitating flow impacted by pressure wave, which is of great interest in engineering applications but has not been studied systematically so far. Numerical simulation indicates that cavity over cylinder can be induced to collapse if the object is accelerated suddenly and extremely high pressure pulse results almost instantaneously. This, however, may be avoided by changing the traveling speed smoothly. The accompanying huge pressure increase may damage underwater devices. However, cavity formed at relatively high upstream speed may be less distorted or affected by shock wave and can recover fully from the initial deformation. It is observed that the cavitating flow starting from a higher freestream velocity is more stable and more resilient with respect to perturbation than the flow with lower background speed. These findings may shed some light on how to control cavitation development to avoid possible damage to operating devices.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Schmidt, D. P., Rutland, C. J. and Corradini, M. L., A fully compressible two-dimensional model of small high speed cavitating nozzles, Atomization Sprays, 9 (1999), 255276.CrossRefGoogle Scholar
[2]Liu, T. G., Khoo, B. C. and Xie, W. F., Isentropic one-fluid modeling of unsteady cavitating flow, J. Comput. Phys., 201 (2004), 80108.CrossRefGoogle Scholar
[3]Neaves, M. D. and Edwards, J. R., All-speed time-accurate underwater projectile calculations using a preconditioning algorithm, J. Fluids Eng., 128 (2006), 284296.CrossRefGoogle Scholar
[4]Hrubes, J. D., High-speed imaging of supercavitating underwater projectiles, Exp. Fluids, 30 (2001), 5764.CrossRefGoogle Scholar
[5]Goncalves, E. and Patella, R. F., Numerical simulation of cavitating flows with homogenous models, Comput. Fluids, 38 (2009), 16821696.CrossRefGoogle Scholar
[6]Goncalves, E. and Patella, R. F., Numerical study of cavitating flows with thermodynamic effect, Comput. Fluids, (39) 2010, 99113.CrossRefGoogle Scholar
[7]Hu, Z. M., Dou, H. S. and Khoo, B. C., On the modified dispersion-controlled dissipative (DCD) scheme for computation of flow supercavitation, Comput. Fluids, 40 (2011), 315323.CrossRefGoogle Scholar
[8]Toro, E. F., Riemann solvers and numerical methods for fluid Dynamics: a practical introduction, Springer-Verlag, Berlin Heidelberg, 1999.CrossRefGoogle Scholar
[9]Blazek, J., Computational fluid dynamics: principles and applications, ELSEVIER, 2001.Google Scholar
[10]Leer, B. van, Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32 (1979), 101136.CrossRefGoogle Scholar
[11]Barth, T. J. and Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, AIAA Report, (1989), 890366.Google Scholar
[12]Mavriplis, D. J., Revisiting the least-squares procedures for gradient reconstruction on unstructured meshs, in: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper, (2003), 20033986.Google Scholar
[13]Balakrishnan, N. and Fernandez, G., Wall boundary conditions for inviscid compressible flows on unstructured meshes, Int. J. Numer. Methods Fluids, 28 (1998), 14811501.3.0.CO;2-B>CrossRefGoogle Scholar
[14]Park, J. S., Yoon, S. H. and Kim, C., Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids, J. Comput. Phys., 229 (2010), 788812.CrossRefGoogle Scholar
[15]Nikolos, I. K. and Delis, A. I., An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput. Meth. Appl. Mech. Eng., 198 (2009), 37233750.CrossRefGoogle Scholar
[16]Delis, A. I., Nikolos, I. K. and Kazolea, M., Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows, Arch. Comput. Meth. Eng., 18(1) (2011), 162.CrossRefGoogle Scholar
[17]Shu, C. W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77 (1988), 439471.CrossRefGoogle Scholar
[18]Tang, H. S. and Huang, D., A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones, J. Comput. Phys., 128 (1996), 301318.CrossRefGoogle Scholar
[19]Hu, Z. M., Khoo, B. C. and Zheng, J. G., The simulation of unsteady cavitating flows with external perturbations, submitted for publication in 2011.Google Scholar
[20]Grady, R. J., Hydroballistics design handbook, Vol I, Naval Sea Systems Command, Technical Report No, SEAHAC/79-1, (1979), 3845.Google Scholar
[21]Xie, W. F., Liu, T. G. and Khoo, B. C., Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model, Comput. Fluids, 35 (2006), 11771192.CrossRefGoogle Scholar
[22]Zhu, J., Liu, T. G., Qiu, J. X. and Khoo, B. C., RKDG methods with WENO limiters for unsteady cavitating flow, Comput. Fluids. 57 (2012), 5265.CrossRefGoogle Scholar
[23]Delgosha, O. C., Patella, R. F., Reboud, J. L., Hakimi, N. and Hirsch, C., Numerical simulation of cavitating flow in 2D and 3D inducer geometries, Int. J. Numer. Methods Fluids, 48 (2005),135167.CrossRefGoogle Scholar
[24]Wallis, G. B., One-dimensional two-phase flow, New York: McGill-Hill, 1969.Google Scholar
[25]Leer, B. van, Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes, Commun. Comput. Phys., 1(2) (2006), 192206.Google Scholar
[26]Saurel, R., Petitpas, F. and Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., (228) 2009, 16781712.CrossRefGoogle Scholar
[27]Kunz, R. F., Boger, D. A. and Stinebring, D. R., A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction, Comput. Fluids, 29 (2000), 849875.CrossRefGoogle Scholar
13
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simulation of Wave-Flow-Cavitation Interaction Using a Compressible Homogenous Flow Method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Simulation of Wave-Flow-Cavitation Interaction Using a Compressible Homogenous Flow Method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Simulation of Wave-Flow-Cavitation Interaction Using a Compressible Homogenous Flow Method
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *