Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-jgqf9 Total loading time: 0.221 Render date: 2021-10-26T13:06:02.710Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices

Published online by Cambridge University Press:  20 August 2015

Jianhua Yuan*
Affiliation:
Department of Mathematics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Ya Yan Lu*
Affiliation:
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
*
Corresponding author.Email:jianhua_yuan@126.com
Get access

Abstract

In a two-dimensional (2D) photonic crystal (PhC) composed of circular cylinders (dielectric rods or air holes) on a square or triangular lattice, various PhC devices can be created by removing or modifying some cylinders. Most existing numerical methods for PhC devices give rise to large sparse or smaller but dense linear systems, all of which are expensive to solve if the device is large. In a previous work [Z. Hu et al., Optics Express, 16 (2008), 17383-17399], an efficient Dirichlet-to-Neumann (DtN) map method was developed for general 2D PhC devices with an infinite background PhC to take full advantage of the underlying lattice structure. The DtN map of a unit cell is an operator that maps the wave field to its normal derivative on the cell boundary and it allows one to avoid computing the wave field in the interior of the unit cell. In this paper, we extend the DtN map method to PhC devices with a finite background PhC. Since there is no bandgap effect to confine the light in a finite PhC, a different technique for truncating the domain is needed. We enclose the finite structure with a layer of empty boundary and corner unit cells, and approximate the DtN maps of these cells based on expanding the scattered wave in outgoing plane waves. Our method gives rise to a relatively small and sparse linear systems that are particularly easy to solve.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Joannopoulos, J. D., Meade, R. D. and Winn, J. N., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ. 1995.Google Scholar
[2]Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R. and Joannopoulos, J. D., High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett., 77 (1996), 3787–3790.CrossRefGoogle ScholarPubMed
[3]Koshiba, M., Tsuji, Y. and Hikari, M., Time-domain beam propagation method and its application to photonic crystal circuits, J. Lightw. Technol., 18 (2000), 102–110.CrossRefGoogle Scholar
[4]Fan, S., Villeneuve, P. R., Joannopoulos, J. D. and Haus, H. A., Channel drop tunneling through localized states, Phys. Rev. Lett., 80 (1998), 960–963.CrossRefGoogle Scholar
[5]Fan, S., Johnson, S. G., Joannopoulos, J. D., Manolatou, C. and Haus, H. A., Waveguide branches in photonic crystals, J. Opt. Soc. Am. B., 18 (2001), 162–165.CrossRefGoogle Scholar
[6]Fujisawa, T. and Koshiba, M., Finite-element modeling of nonlinear interferometers based on photonic-crystal waveguides for all-optical signal processing, J. Lightw. Technol., 24 (2006), 617–623.CrossRefGoogle Scholar
[7]Taflove, A. and Hagness, S. C., Computational Electrodynamics: the Finite-Difference TimeDomain Method, 2nd ed., Artech House, 2000.Google Scholar
[8]Jin, J. M., The Finite Element Method in Electromagnetics, 2nd ed., John Wiley & Sons, New York, 2002.Google Scholar
[9]Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar
[10]Felbacq, D., Tayeb, G. and Maystre, D., Scattering by a random set of parallel cylinders, J. Opt. Soc. Am. A., 11 (1994), 2526–2538.CrossRefGoogle Scholar
[11]McPhedran, R. C., Botten, L. C., Asatryan, A. A.et al., Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders, Phys. Rev. E., 60 (1999), 7614–7617.CrossRefGoogle ScholarPubMed
[12]Botten, L. C., White, T. P., Asatryan, A. A.et al., Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I: theory, Phys. Rev. E., 70 (2004), 056606.Google ScholarPubMed
[13]Yasumoto, K., Toyama, H. and Kushta, T., Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique, IEEE T. Antenn. Propag., 52 (2004), 2603–2611.CrossRefGoogle Scholar
[14]Yuan, J. and Lu, Y. Y., Photonic bandgap calculations using Dirichlet-to-Neumann maps, J. Opt. Soc. Am. A., 23 (2006), 3217–3222.CrossRefGoogle ScholarPubMed
[15]Huang, Y. and Lu, Y. Y., Scattering from periodic arraysof cylinders by Dirichlet-to-Neumann maps, J. Lightw. Technol., 24 (2006), 3448–3453.Google Scholar
[16]Yuan, J. and Lu, Y. Y., Computing photonic band structures by Dirichlet-to-Neumann maps: the triangular lattice, Opt. Commun., 273 (2007), 114–120.CrossRefGoogle Scholar
[17]Huang, Y., Lu, Y. Y. and Li, S., Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps, J. Opt. Soc. Am. B., 24 (2007), 2860–2867.CrossRefGoogle Scholar
[18]Li, S. and Lu, Y. Y., Computing photonic crystal defect modes by Dirichlet-to-Neumann maps, Opt. Express., 15 (2007), 14454–14466.CrossRefGoogle ScholarPubMed
[19]Huang, Y. and Lu, Y. Y., Modeling photonic crystals with complex unit cells by Dirichlet-to-Neumann maps, J. Comput. Math., 25 (2007), 337–349.Google Scholar
[20]Wu, Y. and Lu, Y. Y., Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice, J. Opt. Soc. Am. B., 25 (2008), 1466–1473.CrossRefGoogle Scholar
[21]Hu, Z. and Lu, Y. Y., Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps, Opt. Express., 16 (2008), 17383–17399.CrossRefGoogle ScholarPubMed
[22]Hu, Z. and Lu, Y. Y., Improved Dirichlet-to-Neumann map method for modeling extended photonic crystal devices, Opt. Quant. Electron., 40 (2008), 921–932.CrossRefGoogle Scholar
[23]Li, S. and Lu, Y. Y., Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells, J. Opt. Soc. Am. A., 24 (2007), 2438–2442.CrossRefGoogle ScholarPubMed
[24]Yuan, J., Lu, Y. Y. and Antoine, X., Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps, J. Comput. Phys., 227 (2008), 4617–3629.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *