Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:54:27.677Z Has data issue: false hasContentIssue false

Polynomials over structured grids

Published online by Cambridge University Press:  04 October 2022

Bogdan Nica*
Affiliation:
Department of Mathematical Sciences, Indiana University–Purdue University, Indianapolis, IN, USA
*

Abstract

We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.

Type
Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, N. (1999) Combinatorial Nullstellensatz. Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8(1–2) 729.CrossRefGoogle Scholar
Artin, E. (1948) Linear mappings and the existence of a normal basis. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, pp. 15.Google Scholar
Ball, S. and Serra, O. (2009) Punctured Combinatorial Nullstellensätze. Combinatorica 29(5) 511522.CrossRefGoogle Scholar
Bhatnagar, G. (1999) A short proof of an identity of Sylvester. Int. J. Math. Math. Sci. 22(2) 431435.CrossRefGoogle Scholar
Bishnoi, A. and Clark, P. L. (2022) Restricted variable Chevalley-Warning theorems, arXiv: 2201.11236.Google Scholar
Bishnoi, A., Clark, P. L., Potukuchi, A. and Schmitt, J. R. (2018) On zeros of a polynomial in a finite grid. Combin. Probab. Comput. 27(3) 310333.CrossRefGoogle Scholar
Clark, P. L. (2014) The Combinatorial Nullstellensätze revisited. Electron. J. Combin. 21(4, Paper 4. 15) 17pp.CrossRefGoogle Scholar
Clark, P. L. Around the Chevalley-Warning theorem, book draft (in progress).Google Scholar
Fine, N. J. (1947) Binomial coefficients modulo a prime. Am. Math. Mon. 54 589592.CrossRefGoogle Scholar
Geil, O. and Martínez-Peñas, U. (2019) Bounding the number of common zeros of multivariate polynomials and their consecutive derivatives. Combin. Probab. Comput. 28(2) 253279.CrossRefGoogle Scholar
Karasev, R. N. and Petrov, F. V. (2012) Partitions of nonzero elements of a finite field into pairs. Israel J. Math. 192(1) 143156.CrossRefGoogle Scholar
Kouba, O. (2009) A duality based proof of the combinatorial Nullstellensatz. Electron. J. Combin. 16(1, Note 9) 3pp.CrossRefGoogle Scholar
Lasoń, M. (2010) A generalization of combinatorial Nullstellensatz. Electron. J. Combin. 17(1, Note 32) 6pp.CrossRefGoogle Scholar
Lidl, R. and Niederreiter, H. (1997). Finite Fields, second edition, Vol. 20 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press.Google Scholar
Michałek, M. (2010) A short proof of combinatorial Nullstellensatz. Am. Math. Mon. 117(9) 821823.Google Scholar
Ore, O. (1933) On a special class of polynomials. Trans. Am. Math. Soc. 35(3) 559584.CrossRefGoogle Scholar
Rédei, L. (1973) Lacunary Polynomials Over Finite Fields, North-Holland.Google Scholar
Schauz, U. (2008) Algebraically solvable problems: describing polynomials as equivalent to explicit solutions. Electron. J. Combin. 15(1, Research Paper 10) 35pp.CrossRefGoogle Scholar
Sziklai, P. and Takáts, M. (2008) Vandermonde sets and super-Vandermonde sets. Finite Fields Appl. 14(4) 10561067.CrossRefGoogle Scholar
Tao, T. (2014) Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory. EMS Surv. Math. Sci. 1(1) 146.CrossRefGoogle Scholar