Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.368 Render date: 2022-08-14T10:48:16.132Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Regular Partitions of Hypergraphs: Counting Lemmas

Published online by Cambridge University Press:  01 November 2007

VOJTĚCH RÖDL
Affiliation:
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: rodl@mathcs.emory.edu)
MATHIAS SCHACHT
Affiliation:
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany (e-mail: schacht@informatik.hu-berlin.de)

Abstract

We continue the study of regular partitions of hypergraphs. In particular, we obtain corresponding counting lemmas for the regularity lemmas for hypergraphs from our paper ‘Regular Partitions of Hypergraphs: Regularity Lemmas’ (in this issue).

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Avart, C., Rödl, V. and Schacht, M.Every monotone 3-graph property is testable. SIAM J. Discrete Math. 21 (1)7392.CrossRefGoogle Scholar
[2]Cooley, O., Fountoulakis, N., Kühn, D. and Osthus, D. Embeddings and Ramsey numbers of sparse k-uniform hypergraphs. Submitted.Google Scholar
[3]Erdős, P., Frankl, P. and Rödl, V. (1986) The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2 113121.CrossRefGoogle Scholar
[4]Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131164.CrossRefGoogle Scholar
[5]Gowers, W. T. Hypergraph regularity and the multidimensional Szemerédi theorem. Submitted.Google Scholar
[6]Kohayakawa, Y., Rödl, V. and Skokan, J. (2002) Hypergraphs, quasi-randomness, and conditions for regularity. J. Combin. Theory Ser. A 97 307352.CrossRefGoogle Scholar
[7]Komlós, J., Shokoufandeh, A., Simonovits, M. and Szemerédi, E. (2002) The regularity lemma and its applications in graph theory. In Theoretical Aspects of Computer Science: Tehran 2000, Vol. 2292 of Lecture Notes in Computer Science, Springer, Berlin, pp. 84112.CrossRefGoogle Scholar
[8]Nagle, B., Rödl, V. and Schacht, M. (2006) The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg. 28 113179.CrossRefGoogle Scholar
[9]Nagle, B., Rödl, V. and Schacht, M. (2006) Extremal hypergraph problems and the regularity method. In Topics in Discrete Mathematics, Vol. 26 of Algorithms Combin., Springer, Berlin, pp. 247278.CrossRefGoogle Scholar
[10]Nagle, B., Sayaka, O., Rödl, V. and Schacht, M. On the Ramsey number of sparse 3-graphs. Submitted.Google Scholar
[11]Rödl, V. and Schacht, M. (2007) Regular partitions of hypergraphs: regularity lemmas. Combin. Probab. Comput. 16 (6): 833885.Google Scholar
[12]Rödl, V., Schacht, M., Siggers, M. and Tokushige, N. (2007) Integer and fractional packings of hypergraphs. J. Combin. Theory Ser. B 97 245268.CrossRefGoogle Scholar
[13]Rödl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Alg. 25 142.CrossRefGoogle Scholar
[14]Rödl, V. and Skokan, J. (2006) Applications of the regularity lemma for uniform hypergraphs. Random Struct. Alg. 28 180194.CrossRefGoogle Scholar
[15]Tao, T. (2006) A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113 12571280.CrossRefGoogle Scholar
28
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Regular Partitions of Hypergraphs: Counting Lemmas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Regular Partitions of Hypergraphs: Counting Lemmas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Regular Partitions of Hypergraphs: Counting Lemmas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *