Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T05:21:32.664Z Has data issue: false hasContentIssue false

Putative Common Pathways in Therapeutic Brain Stimulation for Affective Disorders

Published online by Cambridge University Press:  07 November 2014

Abstract

Brain stimulation methods in the treatment of affective disorder are electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). Clinically, ECT is considered the strongest remedy in the treatment of severe depression, especially depression with psychotic features, and in the elderly. TMS, despite positive reports, is somewhat more controversial. VNS has, so far, only been used in treatment-resistant depression with limited results. DBS may be of potential use in rare cases of treatment-resistant cases of affective disorder. This article highlights the similarities and differences between the four stimulation methods. The main difference is the seizures necessary in ECT. A stronger involvement of the hippocampus following experimental seizures compared with effects in that region induced by TMS and VNS might explain the consistent findings of the superiority of ECT in the most severe cases of affective disorder.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sackeim, HA, Decina, P, Prohovnik, I, Malitz, S, Resor, SR. Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol Psychiatry. 1983;18:13011310.Google ScholarPubMed
2.Sackeim, HA, Decina, P, Portnoy, S, Neeley, P, Malitz, S. Studies of dosage, seizure threshold and seizure duration in ECT. Biol Psychiatry. 1987;22:249268.CrossRefGoogle ScholarPubMed
3.Sackeim, HA. The anticonvulsant hypothesis of the mechanisms of action of ECT: current status. J ECT. 1999;15:526.CrossRefGoogle ScholarPubMed
4.Green, A, Nutt, D. Psychopharmacology of repeated seizures: possible relevance to the mechanisms of action of electroconvulsive therapy. In: Iversen, L, Iversen, S, Snyder, S, eds. Handbook of Psychopharmacology. vol. 19. New York, NY: Plenum Press; 1987:375419.CrossRefGoogle Scholar
5.Kragh, J, Tonder, N, Finsen, BR, Zimmer, J, Bolwig, TG. Repeated electroconvulsive shocks cause transient changes in rat hippocampal somatostatin and neuropeptide Y immunoreactivity and mNRA in situ hybridization signals. Exp Brain Res. 1994;98:305313.CrossRefGoogle Scholar
6.Mikkelsen, JD, Woldbye, D, Kragh, J, Larsen, PJ, Bolwig, TG. Electroconvulsive shocks increase the expression of neuropeptide Y (NPY) mRNA in the piriform cortex and the dentate gyrus. Brain Res Mol Brain Res. 1994;23:317322.CrossRefGoogle ScholarPubMed
7.Sackeim, HA, Devanand, DP, Nobler, MS. Electroconvulsive therapy. In: Bloom, F, Kupfer, D, eds. Psychopharmacology: The Fourth Generation of Progress. Philadelphia, Pa: Lippincott Williams & Wilkins; 1995:11231142.Google Scholar
8.Nobler, MS, Sackeim, HA, Prohovnik, I, et al.Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch Gen Psychiatry. 1994;51:884897.CrossRefGoogle ScholarPubMed
9.Bolwig, TG, Woldbye, DP, Mikkelsen, JD. Electroconvulsive therapy as an anticonvulsant: a possible role of neuropeptide Y (NPY). J ECT. 1999;15:93101.CrossRefGoogle ScholarPubMed
10.Woldbye, DP, Larsen, PJ, Mikkelsen, JD, Klemp, K, Madsen, TM, Bolwig, TG. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat Med. 1997;3:761764.CrossRefGoogle ScholarPubMed
11.Mathé, AA. Neuropeptides and electroconvulsive treatment. J ECT. 1999;15:6075.Google ScholarPubMed
12.Mathé, AA, Rudorfer, MV, Stenfors, C, Manji, HK, Potter, WC, Theodorsson, E. Effects of electroconvulsive treatment on somatostatin, neuropetide Y, endothelin and neurokinin A concentrations in cerebrospinal fluid of depressed patients. Depression. 1996;3:250256.CrossRefGoogle Scholar
13.Post, RM, Speer, AM, Weiss, SR, Li, H. Seizure models: anticonvulsant effects of ECT and rTMS. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:12511273.CrossRefGoogle ScholarPubMed
14.Duman, RS, Vaidya, VA. Molecular and cellular actions of chronic electroconvulsive seizures. J ECT. 1998;14:181193.CrossRefGoogle ScholarPubMed
15.Madsen, TM, Treschow, A, Bengzon, J, Bolwig, TG, Lindvall, O, Tingström, A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47:10431049.CrossRefGoogle Scholar
16.UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet. 2003;361:799808.CrossRefGoogle Scholar
17.Holtzheimer, PE III, Russo, J, Avery, DH. A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. Psychopharmacol Bull. 2001;35:149169.Google ScholarPubMed
18.Martin, JL, Barbanoj, MJ, Schlaepfer, TE, et al.Transcranial magnetic stimulation for treating depression. Cochrane Database Syst Rev. 2002;2: CD003493.Google Scholar
19.Burt, T, Lisanby, SH, Sackeim, HA. Neuropsychiatric applications of transcranial magnetic stimulation: a meta-analysis. Int J Neuropsychopharmacol. 2002;5:73103.CrossRefGoogle ScholarPubMed
20.Pridmore, S, Bruno, R, Turnier-Shea, Y, Reid, P, Rybak, M. Comparison of unlimited numbers of rapid transcranial magnetic stimulation (rTMS) and ECT treatment sessions in major depressive episode. Int J Neuropsychopharmacol. 2000;3:129134.CrossRefGoogle ScholarPubMed
21.Janicak, PG, Dowd, SM, Martis, B, et al.Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: preliminary results of a randomized trial. Biol Psychiatry. 2002;51:659667.CrossRefGoogle ScholarPubMed
22.Grunhaus, L, Schreiber, S, Dolberg, OT, Polak, D, Dannon, PN. A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression. Biol Psychiatry. 2003;53:324331.CrossRefGoogle ScholarPubMed
23.Grunhaus, L, Dannon, PN, Schreiber, S, et al.Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study. Biol Psychiatry. 2000;47:314324.CrossRefGoogle ScholarPubMed
24.Hasey, G. Transcranial magnetic stimulation in the treatment of mood disorder: a review and comparison with electroconvulsive therapy. Can J Psychiatry. 2001;46:720727.CrossRefGoogle ScholarPubMed
25.Lisanby, SH. Update on magnetic seizure therapy: a novel form of convulsive therapy. J ECT. 2002;18:182188.CrossRefGoogle ScholarPubMed
26.George, MS, Stallings, LE, Speer, AMet al.Prefrontal repetitive transcranial magnetic stimulation (rTMS) changes relative perfusion locally and remotely. Hum Psychopharmacol. 1999;14:161–70.3.0.CO;2-2>CrossRefGoogle Scholar
27.George, MS, Nahas, Z, Kozel, FA, et al.Mechanisms and state of the art of transcranial magnetic stimulation. J ECT. 2002;18:170181.CrossRefGoogle ScholarPubMed
28.Teneback, CC, Nahas, Z, Speer, AMet al.Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. J Neuropsychiatry Clin Neurosci. 1999;11:426435.Google ScholarPubMed
29.Strafella, AP, Paus, T, Barrett, J, Dagher, A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21:RC157.CrossRefGoogle ScholarPubMed
30.Paus, T, Castro-Alamancos, MA, Petrides, M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci. 2001;14:14051411.CrossRefGoogle ScholarPubMed
31.Weiss, SRB, Li, XL, Heynen, T, Post, RM. Kindling and quenching: Conceptual links to rTMS. CNS Spectr. 1997;2:6568.CrossRefGoogle Scholar
32.Goddard, GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214:10201021.CrossRefGoogle ScholarPubMed
33.Post, RM. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry. 1992;149:9991010.Google ScholarPubMed
34.Kessing, LV, Andersen, PK, Mortensen, PB, Bolwig, TG. Recurrence in affective disorder. I. Case register study. Br J Psychiatry. 1998;172:2328.CrossRefGoogle ScholarPubMed
35.Kessing, LV, Mortensen, PB, Bolwig, TG. Clinical definitions of sensitization in affective disorder: a case register study of prevalence and prediction. J Affect Disord. 1998;47:3139.CrossRefGoogle ScholarPubMed
36.Malenka, RC. LTP and LTD: dynamic and interactive processes of synaptic plasticity. Neuroscientist. 1995;1:3542.CrossRefGoogle Scholar
37.Post, RM, Putnam, F, Contel, NR, Goldman, B. Electroconvulsive seizures inhibit amygdala kindling: implications for mechanisms of action in affective illness. Epilepsia. 1984;25:234239.CrossRefGoogle ScholarPubMed
38.Post, RM, Kimbrell, T, Frye, M, et al.Implications of kindling and quenching for the possible frequency dependence of rTMS. CNS Spectr. 1997;2:5460.CrossRefGoogle Scholar
39.Fleischmann, A, Prolov, K, Abarbanel, J, Belmaker, RH. The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res. 1995;699:130132.CrossRefGoogle ScholarPubMed
40.Zyss, T, Gorka, Z, Kowalska, M, Vetulani, J. Preliminary comparison of behavioral and biochemical effects of chronic transcranial magnetic stimulation and electroconvulsive shock in the rat. Biol Psychiatry. 1997;42:920924.CrossRefGoogle ScholarPubMed
41.Zis, AP, Nomikos, GG, Brown, EE, Damsma, G, Fibiger, HC. Neurochemical effects of electrically and chemically induced seizures: an in vivo micordialysis study in the rat hippocampus. Neuropsychopharmacology. 1992;7:189195.Google Scholar
42.Keck, ME, Sillaber, I, Ebner, K, et al.Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci. 2000;12:37133720.CrossRefGoogle ScholarPubMed
43.Ji, RR, Schlaepfer, TE, Aizenman, CD, et al.Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci U S A. 1998;95:1563515640.CrossRefGoogle ScholarPubMed
44.Muller, MB, Toschi, N, Kresse, AE, Post, A, Keck, ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology. 2000;23:205215.CrossRefGoogle Scholar
45.George, MS, Lisanby, SH, Sackeim, HA. Transcranial magnetic stimulation: applications in neuropsychiatry. Arch Gen Psychiatry. 1999;56:300311.CrossRefGoogle ScholarPubMed
46.Abrams, R. Electroconvulsive Therapy. Oxford, England: Oxford University Press; 1992.Google ScholarPubMed
47.Triggs, WJ, McCoy, KJ, Greer, R, et al.Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol Psychiatry. 1999;45;14401446.CrossRefGoogle ScholarPubMed
48.Weiner, RD, Rogers, HJ, Davidson, JR, Kahn, EM. Effects of electroconvulsive therapy upon brain electrical activity. Ann N YAcad Sci. 1986;462:270281.CrossRefGoogle ScholarPubMed
49.Kosel, M, Schlaepfer, TE. Mechanisms and state of the art of vagus nerve stimulation. JECT. 2002;18:189192.Google ScholarPubMed
50.Sackeim, HA, Rush, AJ, George, MS, et al.Vagus nerve stimulation for drugresistantdepression: efficacy, side effects and predictors of outcome. Neuropsychopharmacology. 2001;25:713–28CrossRefGoogle ScholarPubMed
51.Greenberg, BD. Update on deep brain stimulation. J ECT. 2002;18:193196.CrossRefGoogle ScholarPubMed
52.Greenberg, BD, Murphy, DL, Rasmussen, SA. Neuroanatomically based approaches to obsessive-compulsive disorder. Neurosurgery and transcranial magnetic stimulation. Psychiatr Clin North Am. 2000;23:671686, xiiCrossRefGoogle ScholarPubMed