Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T14:55:41.132Z Has data issue: false hasContentIssue false

Diffusion Tensor MRI Methods: Historical Perspective and New Directions

Published online by Cambridge University Press:  07 November 2014

Abstract

This article will briefly review the history of diffusion physics and diffusion imaging beginning with Brown's initial observations of the diffusion phenomenon in the early part of the 19th century, through the development of diffusion-weighted imaging, and diffusion tensor imaging. The basic principles and limitations of diffusion tensor imaging are discussed. We conclude by reflecting on some of the open interpretative questions in diffusion imaging.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brown, R. A brief account of microscopical observations made in the months of June, July, and August 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosoph Mag. 1828;4:161.Google Scholar
2.Einstein, A. über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Physik. 1905;4:549560. (English translation in Ref. Einstein: 1956).CrossRefGoogle Scholar
3.Einstein, A. Sue Theorie der Brownschen Bewengung. Ann Physik. 1906;19:371381. (English translation in Ref. Einstein: 1956).CrossRefGoogle Scholar
4.von Smoluchowski, MR. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys. 1906;21:756780.CrossRefGoogle Scholar
5.Perrin, JB. Mouvement brownien et réalité moléculaire. Annales de chimie et de physiqe VIII. 1909;18:4114.Google Scholar
6.Bloch, F. Nuclear induction. Phys Rev (Series II). 1946;70:460474.Google Scholar
7.Bloch, F, Hansen, WW, Packard, M. Nuclear induction. Phys Rev (Series II). 1946;69:127.Google Scholar
8.Purcell, EM, Torrey, HC, Pound, RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev (Series II). 1946;69:37.Google Scholar
9.Hahn, EL. Spin echoes. Phys Rev (Series II). 1950;80:580594.Google Scholar
10.Carr, HY, Purcell, EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev (Series II). 1954;94:630638Google Scholar
11.Torrey, HC. Bloch equations with diffusion terms. Phys Rev (Series II). 1956;104:563565.Google Scholar
12.Stejskal, EO, Tanner, JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288292.CrossRefGoogle Scholar
13.Woessner, DE. NMR spin-echo self-diffusion measurements on fluids undergoing restricted diffusion. J Phys Chem. 1963;67:13651366.CrossRefGoogle Scholar
14.Stejskal, EO. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys. 1965;43:35973603.CrossRefGoogle Scholar
15.Tanner, JE, Stejskal, EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys. 1968;49:17681777.CrossRefGoogle Scholar
16.Murday, JS, Cotts, RM. Self-diffusion coefficient of liquid lithium. J Chem Phys. 1968;48:49384945.CrossRefGoogle Scholar
17.Wayne, RC, Cotts, RM. Nuclear-magnetic-resonance study of self-diffusion in a bounded medium. Phys Rev. 1966;151:264272.CrossRefGoogle Scholar
18.Cooper, RL, Chang, DB, Young, AC, et al.Restricted diffusion in biophysical systems. Biophys J. 1974;14:1611771.CrossRefGoogle ScholarPubMed
19.Cleveland, GG, Chang, DC, Hazlewood, CF. Nuclear magnetic resonance measurements of skeletal muscle. Anisotropy of the diffusion coefficient of the intracellular water. Biophys J. 1976;16:10431053.CrossRefGoogle ScholarPubMed
20.Tanner, JE. Transient diffsuion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J Chem Phys. 1978;69:17481754.CrossRefGoogle Scholar
21.Tanner, JE. Self diffusion of water in frog muscle. Biophys J. 1979;28:107116.CrossRefGoogle ScholarPubMed
22.Brownstein, KR, Tarr, CE. Importance of classical diffusion in NMR studies of water in biological cells. Phys Rev A. 1979;19:24462453.CrossRefGoogle Scholar
23.Tanner, JE. Intracellular diffusion of water. Arch Biochem Biophys. 1983;224:416428.CrossRefGoogle ScholarPubMed
24.Karger, J, Heink, W. The propagator representation of molecular transport in microporous crystallites. J Magn Reson. 1983;51:17.Google Scholar
25.Cory, DG, Garroway, AG. Measurement of translational displacement probabilities by NMR: an indicator of compartmentation. Magn Reson Med. 1990;14:435444.CrossRefGoogle ScholarPubMed
26.Callaghan, PT, Coy, A, Macgowan, D, et al.Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature. 1991;351:467.CrossRefGoogle Scholar
27.Callaghan, PT. Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press: Oxford, England.CrossRefGoogle Scholar
28.Callaghan, PT. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys. 1999;62:599670.CrossRefGoogle Scholar
29.Lauterbur, PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190191.CrossRefGoogle Scholar
30.Mansfield, P. Multi-planar image formation using NMR spin echoes. J Phys C. 1977;10:5558.CrossRefGoogle Scholar
31.Mansfield, P. Real-time echo-planar imaging by NMR. Br Med Bull. 1984;40:187190.CrossRefGoogle ScholarPubMed
32.Rzedzian, R, Pykett, I. Instant images of the human heart using a new, whole-body MR imaging system. Amer J Roent. 1986;149:245250.CrossRefGoogle Scholar
33.Taylor, DG, Bushell, MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol. 1985;30:345349.CrossRefGoogle ScholarPubMed
34.Wesbey, GE, Moseley, ME, Ehman, RL. Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol. 1984;19:491498.CrossRefGoogle ScholarPubMed
35.LeBihan, D, Breton, E, Lallemand, D, et al.MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401407.CrossRefGoogle Scholar
36.LeBihan, D, Breton, E, Lallemand, D, et al.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497505.CrossRefGoogle Scholar
37.Moseley, ME, Cohen, Y, Mintorovitch, J, et al.Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330346.CrossRefGoogle ScholarPubMed
38.Moseley, ME, Cohen, Y, Kucharczyk, J, et al.Diffusion weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439446.CrossRefGoogle ScholarPubMed
39.Doran, M, Hajnal, V, Van Bruggen, N, et al.Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr. 1990;14:865873.CrossRefGoogle ScholarPubMed
40.Chenevert, TL, Brunberg, A, Pipe, JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401405.CrossRefGoogle ScholarPubMed
41.Basser, PJ, Mattiello, J, Le Bihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259267.CrossRefGoogle ScholarPubMed
42.Basser, PJ, Mattiello, , LeBihan, D. MR imaging of fiber-tract direction and diffusion in anisotropic tissues. Magn Reson Med. 1993;1:288.Google Scholar
43.Davis, TL, Wedeen, VJ, Weisskoff, RM, Rosen, BR. White matter tract visualization by echo-planar MRI. Magn Reson Med. 1993;1:289.Google Scholar
44.Tuch, DS. Diffusion MRI of Complex Tissue Structure [dissertation]. Cambridge, Mass: Division of Health Sciences and Technology, Harvard-MIT; 2002.Google Scholar
45.Beaulieu, C, Fenrich, FR, Allen, PS. Multicomponent water proton trans-verse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn Reson Imaging. 1998;16:12011210.CrossRefGoogle Scholar
46.Beaulieu, C, Allen, PS. Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31:394400.CrossRefGoogle ScholarPubMed
47.Wimberger, DM, Roberts, TP, Barkovich, AJ, et al.Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr. 1995;19:2833.CrossRefGoogle ScholarPubMed
48.Ono, J, Harada, K, Takahashi, M, et al.Differentation between dysmyelination and demyelination using magnetic resonance diffusional anisotropy. Brain Research. 1995;671:141148.CrossRefGoogle Scholar
49.Beaulieu, C, Allen, PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994b;32:579583.CrossRefGoogle ScholarPubMed
50.Norris, DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 2001;14:7793.CrossRefGoogle ScholarPubMed
51.Chien, D, Buxton, RB, Kwong, KK, Brady, TJ, Rosen, BR. MR diffusion imaging of the human brain. J Comput Assist Tomogr. 1990;14:514520.CrossRefGoogle ScholarPubMed