Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T15:38:28.403Z Has data issue: false hasContentIssue false

Atypical Antipsychotics: Matching Receptor Profile to Individual Patient's Clinical Profile

Published online by Cambridge University Press:  07 November 2014

Abstract

Understanding common pharmacologic and clinical “class” actions associated with atypical antipsychotics certainly reveals how these agents are alike, but what about unique differences from one agent to another? Atypical antipsychotics are also a heterogeneous group of agents that have complex pharmacologic entities, acting upon multiple dopamine receptors (D2, D1 (D3, and D4) and multiple serotonin receptors (5-HT2A, 5-HT2C, 5-HT1A, and 5-HT1D, among others). Atypical antipsychotics also interact with noradrenergic (α1- and α2-adrenergic receptor blockade), histaminergic (H1-receptor blockade), and cholinergic (muscarinic M1 blockade) neurotransmitter systems as well as with monoamine (D, 5-HT, and norepinephrine reuptake blockade) transporters. However, no two atypical antipsychotics possess the same portfolio of actions upon all of these additional neurotransmitter systems.

Type
Academic Supplement
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meltzer, HY, Matsuhara, S, Lee, JC. The ratios of serotonin 2 and dopamine 2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull. 1989;25:390392.Google Scholar
2.Lahti, AC, Weiler, MA, Corey, PK, Lahti, RA, Carlsson, A, Tamminga, CA. Antipsychotic properties of the partial dopamine agonist -3(3 hydroxyphenyl)-N-n-propylpiperdine (preclamol) in schizophrenia. Biol Psychiatry. 1998;43:211.Google Scholar
3.Tamminga, CA, Carlsson, A. Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr Drug Targets CNS Neurol Disord. 2002;1:141147.Google Scholar
4.Hirschfeld, RM. The efficacy of atypical antipsychotics in bipolar disorders. J Clin Psychiatry. 2003;64(suppl 8):1521.Google Scholar
5.Vieta, E, Gasto, C, Colom, F, et al.Role of risperidone in bipolar II: an open 6-month study. J Affect Disord. 2001;67:213219.Google Scholar
6.Schmidt, AW, Lebel, LA, Howard, HR Jr, Zom, SH. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol. 2001;425:197201.Google Scholar
7.Shapiro, DA, Renock, S, Arrington, E, et al.Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology. 2003;28:14001411.CrossRefGoogle ScholarPubMed
8.Lawler, CP, Prioleau, C, Lewis, MM, et al.Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmocology. 1999;20:430441.Google Scholar
9.de Paulis, T.M-100907 (Aventis). Curr Opin Invesig Drugs. 2001;2:123132.Google ScholarPubMed
10.Miyamoto, S, Duncan, GE, Goff, DC, Lieberman, JA. Therapeutics of schizophrenia. In: Davis, K, Chamey, D, Coyle, JT, Nemeroff, C, eds. Neuropsychophormocology: The Fifth Generation of Progress. (American College of Neuropsychopharmacology) Philadelphia, PA: Lippincott Williams & Wilkins; 2002;790807.Google Scholar
11.Stahl, SM, Shayegan, DK. The psychopharmacology of ziprasidone: receptorbinding properties and real-world psychiatric practice. J Clin Psychiatry. 2003: 64(Suppl 19):612.Google ScholarPubMed
12.Kapur, S, Remington, G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry. 2001;50:873883.Google Scholar
13.Stahl, SM. Hit-and-run actions at dopamine receptors, part 1: mechanism of action of atypical antipsychotics. J Clin Psychiatry. 2001;62:670671.Google Scholar
14.Kinon, BJ, Ahl, J, Stauffer, VL, Hill, AL, Buckley, PF. Dose response and atypical antipsychotics in schizophrenia. CNS Drugs. 2004;18:597616.Google Scholar
15.Davis, JM, Chen, N. Dose response and dose equivalence of antipsychotics. J Clin Psychopharmacol. 2004;24:192208.Google Scholar
16.Bench, CJ, Lammertsma, AA, Dolan, RJ, et al.Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and HC-raclopride. Psychophormacology (Berl). 1993;112:308314.CrossRefGoogle Scholar
17.Bench, CJ, Lammertsma, AA, Grasby, PM, et al.The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl). 1996;124:141147.Google Scholar
18.Fischman, AJ, Bonab, AA, Babich, JW, et al.Positron emission tomographic analysis of central 5-hydroxytryptamine2 receptor occupancy in healthy volunteers treated with the novel antipsychotic, ziprasidone. J Pharmacol Exp Ther. 1996;279:939947.Google Scholar
19.Mamo, D, Kapur, S. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with dierapeutic doses of ziprasidone. Am J Psychiatry. 2004;161:818825.CrossRefGoogle ScholarPubMed
20.Harrigan, EP, Miceli, JJ, Anziano, R, et al.A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition. J Clin Psychopharmacol. 2004;24:6269.Google Scholar
21.Faraone, SV, Glatt, SJ, Su, J, Tsuang, MT. Three potential susceptibility loci shown by a genome-wide scan for regions influencing the age at onset of mania. Am J Psychiatry. 2004;161:625630.Google Scholar
22.Blumberg, HP, Kauffman, J, Martin, A, Chamey, DS, Krystal, JH, Peterson, BS. Significance of adolescent neurodevelopment for the neural circuitry of bipolar disorder. Ann NY Acad Sci. 2004;1021:376383.CrossRefGoogle ScholarPubMed
23.Willins, DL, Deutch, AY, Roth, BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse. 1997;27(1):7982.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
24.Jakab, RL, Goldman-Rakic, PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A. 1998;95(2):735–40.CrossRefGoogle ScholarPubMed
25.Goldman-Rakic, PS. The “psychic” neuron of the cerebral cortex. Ann N Y Acad Sci. 1999;868:1326.Google Scholar
26.Weinberger, DR. Dopamine, the prefrontal cortex, and a genetic mechanism of schizophrenia. In: Kapur, S, Lecrubier, Y, eds. Dopamine in the Pathophysiology and Treatment of Schizophrenia: New Findings. London, England: Martin Dunitz; 2003:129154.Google Scholar
27.Harrison, PJ, Weinberger, DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry advance online publication. 2004;20:129.Google Scholar
28.Williams, GV, Rao, SG, Goldman-Rakic, PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci. 2002;22(7):28432854.CrossRefGoogle ScholarPubMed
29.Nocjar, C, Roth, BL, Pehek, EA. Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience. 2002;111(1):163176.CrossRefGoogle ScholarPubMed
30.Haddjeri, N, de Montigny, C, Blier, P. Modulation of the firing activity of noradrenergic neurones in the rat locus coeruleus by the 5-hydroxytryptamine system. Br J Pharmacol. 1997;120:865875.CrossRefGoogle ScholarPubMed
31.Szabo, ST, Blier, P. Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res. 2001a;922:920.Google Scholar
32.Bonaccorso, S, Meltzer, HY, Li, Z, Dai, J, Alboszta, AR, Ichikawa, J. SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology. 2002;27:430441.Google Scholar
33.Pozzi, L, Acconcia, S, Ceglia, I, Invernizzi, RW, Samanin, R. Stimulation of 5-hydroxytryptamine (5-HT[2C[) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem. 2002;82:93100.Google Scholar
34.Bymaster, FP, Katner, JS, Nelson, DL, et al.Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699711.Google Scholar
35.Stahl, SM. Neurotransmission of cognition, part 2. Selective NRIs are smart drugs: exploiting regionally selective actions on both dopamine and norepinephrine to enhance cognition. J Clim Psychiatry. 2003;64:110111.CrossRefGoogle ScholarPubMed
36.Bremner, JD, Vythilingam, M, Ng, CK, et al.Regional brain metabolic correlates of alpha-methylparatyrosine-induced depressive symptoms: implications for the neural circuitry of depression. JAMA. 2003;289:31253134.Google Scholar
37.Mazei, MS, Pluto, CP, Kirkbride, B, Pehek, EA. Effects of catecholamine uptake blockers in the caudate-putame and subregions of the medial prefrontal cortex of the rat. Brain Res. 2002;936:5867.Google Scholar
38.Millan, MJ. Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther. 2000;295:853861.Google Scholar
39.Sumiyoshi, T, Jayathilake, K, Meltzer, HY. The effect of melperone, an atypical antipsychotic drug, on cognitive function in schizophrenia. Schizophr Res. 2003;59:716.Google Scholar
40.Ichikawa, J, Ishii, H, Bonaccorso, S, Fowler, WL, O'Laughlin, IA, Meltzer, HY. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychoticinduced cortical dopamine release. J Neurochem. 2001;76:15211531.CrossRefGoogle Scholar
41.Tauscher, J, Kapur, S, Verhoeff, NP, et al.Brain serotonin 5-HT(1A) receptor binding in schizophrenia measured by positron emission tomography and [11C]WAY-100635. Arch Gen Psychiatry. 2002;59:514520.Google Scholar
42.Briley, M, Moret, C. Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol. 1993;16:387400.Google Scholar
43.Spohn, HE, Strauss, ME. Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. J Abnorm Psychol. 1989;98:367380.Google Scholar
44.King, DJ. The effect of neuroleptics on cognitive and psychomotor function. Br J Psychiatry. 1990;157:799811.Google Scholar
45.Ichikawa, J, Dai, J, O'Laughlin, IA, Fowler, WL, Meltzer, HY. Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology. 2002;26:325339.Google Scholar
46.Kroeze, WK, Hufeisen, SJ, Popadak, BA, et al.H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003;28:519526.CrossRefGoogle ScholarPubMed
47.Stahl, SM. Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. New York, NY: Cambridge University Press; 1996.Google Scholar