Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-26T20:06:47.796Z Has data issue: false hasContentIssue false

Psychostimulant-Induced Behavior as an Animal Model of Obsessive-Compulsive Disorder: An Ethological Approach to the Form of Compulsive Rituals

Published online by Cambridge University Press:  07 November 2014

Abstract

Rats treated chronically with the D2/D3, dopamine receptor agonist quinpirole show a pattern of behavior that meets a set of ethologically derived criteria of compulsive behavior in obsessive-compulsive disorder (OCD). Moreover, in both quinpirole-treated rats and OCD patients, the structure of compulsive rituals appear similar in being composed of relatively few motor acts that are organized in a flexible yet recurrent manner. In addition, the development of compulsive behavior in quinpirole-treated rats is attenuated by the OCD pharmacotherapeutic drug clomipramine. These similarities support the validity of quinpirole-treated rats as a psychostimulant-induced animal model of OCD. Considering that the induction of compulsive behavior in the rat model involves chronic hyperstimulation of dopamine receptors, this raises the possibility that dopaminergic mechanisms may play a role in OCD, at least in some subtypes of this disorder.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abramson, LY, Seligman, MEP. Modeling psychopathology in the laboratory: History and rationale. In: Maser, JD, Seligman, MEP, eds. Psychopathology: Experimental Models. San Franscisco, Calif: Freeman; 1977:126.Google Scholar
2. McKinney, WT Jr, Bunney, WE Jr. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21:240248.CrossRefGoogle ScholarPubMed
3. Willner, P. The validity of animal models of depression. Psychopharmacology (Berl). 1984;83:116.CrossRefGoogle ScholarPubMed
4. Willner, P, Muscat, R, Papp, M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525534.CrossRefGoogle ScholarPubMed
5. Geyer, MA, Markou, A. Animal models of psychiatric disorders. In: Bloom, FE, Kupfer, DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995:787798.Google Scholar
6. McKinney, WT. Models of Mental Disorders: A New Comparative Psychiatry. New York, NY: Plenum Medical Book Co; 1988.CrossRefGoogle Scholar
7. Randrup, A, Munkvad, I. Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia. 1967;11:300310.CrossRefGoogle ScholarPubMed
8. Schiorring, E. Psychopathology induced by “speed drugs”. Pharmacol Biochem Behav. 1981;1(suppl 1):109122.CrossRefGoogle Scholar
9. Schiorring, E. An open field study of stereotyped locomotor activity in amphetamine-treated rats. Psychopharmacology (Berl). 1979;66:281287.CrossRefGoogle ScholarPubMed
10. Schiorring, E. Amphetamine induced selective stimulation of certain behaviour items with concurrent inhibition of others in an open-field test with rats. Behaviour. 1971;39:117.CrossRefGoogle Scholar
11. Ellinwood, EH Jr, Kilbey, MM. Amphetamine stereotypy: the influence of environmental factors and prepotent behavioral patterns on its topography and development. Biol Psychiatry. 1975;10:316.Google ScholarPubMed
12. Kety, SS. Mental illness and the sciences of brain and behavior. Nat Med. 1999;5:11131116.CrossRefGoogle ScholarPubMed
13. Matthysse, S. Animal models in psychiatric research. Prog Brain Res. 1986;65:259270.CrossRefGoogle ScholarPubMed
14. Snyder, SH. The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry. 1976;133:197202.Google ScholarPubMed
15. Snyder, SH. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry. 1973;130:6167.CrossRefGoogle ScholarPubMed
16. Snyder, SH, Aghajanian, GK, Matthysse, S. Prospects for research on schizophrenia. V. Pharmacological observations, Drug-induced psychoses. Neurosci Res Program Bull. 1972;10:430445.Google ScholarPubMed
17. Rasmussen, S, Eisen, JL. Phenomenology of OCD: clinical subtypes, heterogeneity and coexistence. In: Zohar, J, Insel, T, Rasmussen, S, eds. The Psychobiology of Obsessive-Compulsive Disorder. New York, NY: Springer Publishing Company;1991:1343.Google Scholar
18. Goodman, WK, McDougle, CJ, Price, LH, Riddle, MA, Pauls, DL, Leckman, JF. Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? Clin Psychiatry. 1990;51(suppl):3643.Google ScholarPubMed
19. Stein, DJ. Obsessive-compulsive disorder. Lancet. 2002;360:397405.CrossRefGoogle ScholarPubMed
20. Reed, GF. Obsessional Experience and Compulsive Behaviour: A Cognitive-Structural Approach. Orlando, Fl: Academic Press, Inc.; 1985.Google Scholar
21. Rachman, S, Shafran, R. Cognitive and behavioral features of obsessive-compulsive disorder. In: Swinson, RP, Antony, MM, Rachman, S, Richter, MA, eds. Obsessive-Compulsive Disorder: Theory, Research, and Treatment. New York, NY: Guiford Press; 1998:5178.Google Scholar
22. Henderson, JG jr, Pollard, CA. Three types of obsessive compulsive disorder in a community sample. J Clin Psychol. 1988;44:747752.3.0.CO;2-2>CrossRefGoogle Scholar
23. Rasmussen, SA, Eisen, JL. The epidemiology and differential diagnosis of obsessive compulsive disorder. J Clin Psychiatry. 1992;53:(suppl):410.Google ScholarPubMed
24. Insel, TR. Obsessive-compulsive disorder: a neuroethological perspective. Psychopharmacol Bull. 1988;24:365369.Google ScholarPubMed
25. Rapoport, JL. The biology of obsessions and compulsions. Sci Am. 1989;260:8289.CrossRefGoogle ScholarPubMed
26. Lorenz, K. On Aggression. 1st ed. New York, NY: Harcourt, Brace & World; 1966.Google Scholar
27. Jenike, MA, Baer, L, Minichiello, WE. Obsessive-Compulsive Disorders: Theory and Management. 2nd ed. Chicago, Ill: Year Book Medical Publishers, Inc; 1990.Google Scholar
28. Szechtman, H, Sulis, W, Eilam, D. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci. 1998;112:14751485.CrossRefGoogle ScholarPubMed
29. Goodman, WK, Price, LH, Rasmussen, SA, et al. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46:10061011.CrossRefGoogle ScholarPubMed
30. Rapoport, JL. The Boy Who Couldn't Stop Washing: The Experience and Treatment of Obsessive-Compulsive Disorder. 1st ed. New York, NY: E.P. Dutton; 1989.Google Scholar
31. Marks, IM. Fears, Phobias, and Rituals: Panic, Anxiety, and Their Disorders. New York, NY: Oxford University Press; 1987.Google Scholar
32. Serruya, D, Eilam, D. Stereotypies, compulsion and normal behavior in the context of motor routines in the rock hyrax (Procavia Capensis). Psychobiohgy. 1996;24:235246.CrossRefGoogle Scholar
33. Szechtman, H, Talangbayan, H, Canaran, G, Dai, H, Eilam, D. Dynamics of hehavioral sensitization induced by the dopamine agonist quinpirole and a proposed central energy control mechanism. Psychopharrmacology (Berl). 1994;115:95104.CrossRefGoogle Scholar
34. Ben Pazi, A, Szechtman, H, Eilam, D. The morphogenesis of motor rituals in rats treated chronically with the dopamine agonist quinpirole. Behav Neurosci. 2001;115:13011317.CrossRefGoogle ScholarPubMed
35. Szechtman, H, Eckert, MJ, Tse, WS, et al. Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci. 2001;2:4.CrossRefGoogle ScholarPubMed
36. Immelmann, K, Beer, C. A Dictionary of Ethology. Cambridge, Mass: Harvard University Press; 1989.Google Scholar
37. Szechtman, H, Eilam, D. Psychiatric models. In: Whishaw, IQ, Kolb, B, eds, The Behavior of the laboratory Rat: A Handbook With Tests. New York, NY: Oxford University Press; 2005:462474.Google Scholar
38. The Clomipramine Collaborative Study Group. Clomipramine in the treatment of patients with obsessive-compulsive disorder. Arch Gen Psychiatry. 1991;48:730738.CrossRefGoogle Scholar
39. Leonard, HL, Swedo, SE, Lenane, MC et al. A 2- to 7-year follow-up study of 54 obsessive-compulsive children and adolescents. Arch Gen Psychiatry. 1993;50:429439.CrossRefGoogle ScholarPubMed
40. Tizabi, Y, Louis, VA, Taylor, CT, Waxman, D, Culver, KE, Szechtman, H. Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive-compulsive disorder. Biol Psychiatry. 2002;51:164171.CrossRefGoogle ScholarPubMed
41. Brown, RW, Thompson, KD, Thompson, KN, et al. Adulthood nicotine treatment alleviates behavioural impairments in rats neonatally treated with quinpirole: possible roles of acetylcholine function and neurotrophic factor expression. Eur J Neurosci. 2004;19:16341642.CrossRefGoogle ScholarPubMed
42. Brus, R, Kostrzewa, RM, Nowak, P, Perry, KW, Kostrzewa, JP. Ontogenetic quinpirole treatments fail to prime for D2 agonist-enhancement of locomotor activity in 6-hydroxydopamine-lesioned rats. Neurotox Res. 2003;5:329338.CrossRefGoogle ScholarPubMed
43. Tizabi, Y, Copeland, RL Jr, Brus, R, Kostrzewa, RM. Nicotine blocks quinpirole-induced behavior in rats: psychiatric implications. Psychopharmacology (Berl). 1999;145:433441.CrossRefGoogle ScholarPubMed
44. Seeman, P. Receptor Tables, Vol. 2. Drug Dissociation Constants for Neuroreceptors and Transporters. Toronto, Canada: SZ Research; 1993.Google Scholar
45. Eilam, D, Canaran, G, Szechtman, H. Compulsive and rigid locomotion produced by chronic treatment with the D2 agonist quinpirole. Soc Neurosci Abstr. 1989;15:1157.Google Scholar
46. Eilam, D, Szechtman, H. Towards an animal model of obsessive-compulsive disorder (OCD): sensitization to dopamine agonist quinpirole. Soc Neurosci Abstr. 1995;21:192.Google Scholar
47. Einat, H, Szechtman, H. Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol Behav. 1995;57:5559.CrossRefGoogle Scholar
48. McDougle, CJ, Goodman, WK, Leckman, JF, Lee, NC, Heninger, GR, Price, LH. Haloperidol addition in fluvoxamine-refractory obsessive-compulsive disorder. A double-blind, placebo-controlled study in patients with and without tics. Arch Gen Psychiatry. 1994;51:302308.CrossRefGoogle ScholarPubMed
49. McDougle, CJ, Epperson, CN, Pelton, GH, Wasylink, S, Price, LH. A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2000;57:794801.CrossRefGoogle ScholarPubMed
50. Miguel, EC, Shavitt, RG, Ferrao, YA, Brotto, SA, Diniz, JB. How to treat OCD in patients with Tourette syndrome. J Psychosom Res. 2003;55:4957.CrossRefGoogle ScholarPubMed
51. Ramasubbu, R. Antiobsessional effect of risperidone add-on treatment in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder may be dose-dependent. Arch Gen Psychiatry. 2002;59:472473.CrossRefGoogle ScholarPubMed
52. Khullar, A, Chue, P, Tibbo, P. Quetiapine and obsessive-compulsive symptoms (OCS): case report and review of atypical antipsychotic-induced OCS. J Psychiatry Neurosci. 2001;26:5559.Google ScholarPubMed
53. Denys, D, de Geus, F, van Megen, HJ, Westenberg, HG. A double-blind, randomized, placebo-controlled trial of quetiapine addition in patients with obsessive-compulsive disorder refractory to serotonin reuptake inhibitors. J Clin Psychiatry. 2004;65:10401048.CrossRefGoogle ScholarPubMed
54. Frisch, A, Michaelovsky, E, Rockah, R et al. Association between obsessive-compulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways. Eur Neuropsychopharmacol. 2000;10:205209.CrossRefGoogle ScholarPubMed
55. Hemmings, SM, Kinnear, CJ, Niehaus, DJ, et al. Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder. Eur Neuropsychopharmacol. 2003;13:9398.CrossRefGoogle ScholarPubMed
56. Kim, CH, Koo, MS, Cheon, KA, Ryu, YH, Lee, JD, Lee, HS. Dopamine transporter density of basal ganglia assessed with [(123)I]IPT SPET in obsessive-compulsive disorder. Eur J Nucl Med Mol Imaging. 2003;30:16371643.CrossRefGoogle Scholar
57. Millet, B, Chabane, N, Delorme, R, et al. Association between the dopamine receptor D4 (DRD4) gene and obsessive-compulsive disorder. Am J Med Genet. 2003;116:5559.CrossRefGoogle Scholar
58. Billett, EA, Richter, MA, Sam, F, et al. Investigation of dopamine system genes in obsessive-compulsive disorder. Psychiatr Genet. 1998;8:163169.CrossRefGoogle ScholarPubMed
59. Denys, D, van der, WN, Janssen, J, de Geus, F, Westenberg, HG. Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry. 2004;55:10411045.CrossRefGoogle ScholarPubMed
60. Karayiorgou, M, Altemus, M, Galke, BL, et al. Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessive-compulsive disorder. Proc Natl Acad Sci USA. 1997;94:45724575.CrossRefGoogle ScholarPubMed
61. Karayiorgou, M, Sobin, C, Blundell, ML, et al. Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiatry. 1999;45:11781189.CrossRefGoogle ScholarPubMed
62. Zohar, J, Chopra, M, Sasson, Y, Amiaz, R, Amital, D. Obsessive compulsive disorder: serotonin and beyond. World J Biol Psychiatry. 2000;1:92100.CrossRefGoogle ScholarPubMed
63. Szechtman, H, Culver, K, Eilam, D. Role of dopamine systems in obsessive-compulsive disorder (OCD): implications from a novel psychostimulant-induced animal model. Pol J Pharmacol. 1999;51:5561.Google ScholarPubMed
64. Robinson, TE, Becker, JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986;396:157198.CrossRefGoogle ScholarPubMed
65. Szechtman, H, Dai, H, Mustafa, S, Einat, H, Sullivan, RM. Effects of dose and interdose interval on locomotor sensitization to the dopamine agonist quinpirole. Pharmacol Biochem Behav. 1994;48:921928.CrossRefGoogle Scholar
66. Einat, H, Einat, D, Allan, M, Talangbayan, H, Tsafnat, T, Szechtman, H. Associational and nonassociational mechanisms in locomotor sensitization to the dopamine agonist quinpirole. Psychopharrmacology (Berl). 1996;127:95101.CrossRefGoogle Scholar
67. Szechtman, H, Talangbayan, H, Eilam, D. Environmental and behavioral components of sensitization induced by the dopamine agonist quinpirole. Behav Pharmacol. 1993;4:405410.CrossRefGoogle ScholarPubMed
68. Szumlinski, KK, Allan, M, Talangbayan, H, Tracey, A, Szechtman, H. Locomotor sensitization to quinpirole: environment-modulated increase in efficacy and context-dependent increase in potency. Psychopharmacology (Berl). 1997;134:193200.CrossRefGoogle ScholarPubMed
69. Baxter, LRJ, Schwartz, JM, Bergman, KS, et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry. 1992;49:681689.CrossRefGoogle ScholarPubMed
70. Baxter, LRJ. Neuroimaging studies of obsessive compulsive disorder. Psychiatr Clin North Am. 1992;15:871884.CrossRefGoogle ScholarPubMed
71. Benkelfat, C, Nordahl, TE, Semple, WE, King, AC, Murphy, DL, Cohen, RM, Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Patients treated with clomipramine. Arch Gen Psychiatry. 1990;47:840848.CrossRefGoogle ScholarPubMed
72. Swedo, SE, Pietrini, P, Leonard, HL, et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry. 1992;49:690694.CrossRefGoogle ScholarPubMed
73. Kim, JJ, Lee, MC, Kim, J, et al. Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry. 2001;179:330334.CrossRefGoogle ScholarPubMed
74. Jenike, MA, Baer, L, Ballantine, T, et al. Cingulotomy for refractory obsessive-compulsive disorder. A long-term follow-up of 33 patients. Arch Gen Psychiatry. 1991;48:548555.CrossRefGoogle ScholarPubMed
75. Kettl, PA, Marks, IM. Neurological factors in obsessive compulsive disorder. Two case reports and a review of the literature. Br J Psychiatry. 1986;149:315319.CrossRefGoogle ScholarPubMed
76. Chiocca, EA, Martuza, RL. Neurosurgical therapy of obsessive-compulsive disorder. In: Jenike, MA, Baer, L, Minichiello, WE, eds. Obsessive-Compulsive Disorders: Theory and Management. Chicago, Ill: Year Book Medical Publishers Inc; 1990:283294.Google Scholar
77. Baer, L, Rauch, SL, Ballantine, HT, et al. Cinguloromy for intractable obsessive-compulsive disorder—prospective long-term follow-up of 18 patients. Arch Gen Psychiatry. 1995;52:384392.CrossRefGoogle ScholarPubMed
78. Dougherty, DD, Baer, L, Cosgrove, GR, et al. Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am J Psychiatry. 2002;159:269275.CrossRefGoogle ScholarPubMed
79. Saxena, S, Bota, RG, Brody, AL. Brain-behavior relationships in obsessive-compulsive disorder. Semin Clin Neuropsychiatry. 2001;6:82101.CrossRefGoogle ScholarPubMed
80. Modell, JG, Mountz, JM, Curtis, GC, Greden, JF. Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci. 1989;1:2736.Google ScholarPubMed
81. Saxena, S, Rauch, SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am. 2000;23:563586.CrossRefGoogle ScholarPubMed
82. Insel, TR. Toward a neuroanatomy of obsessive-compulsive disorder. Arch Gen Psychiatry. 1992;49:739744.CrossRefGoogle Scholar
83. Szechtman, H, Woody, E. Obsessive-compulsive disorder as a disturbance of security motivation. Psychol Rev. 2004;111:111127.CrossRefGoogle ScholarPubMed
84. Yadin, E, Friedman, E, Bridger, WH. Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav. 1991;40:311315.CrossRefGoogle ScholarPubMed
85. Fernandez-Guasti, A, Ulloa, RE, Nicolini, H. Age differences in the sensitivity to clomipramine in an animal model of obsessive-compulsive disorder. Psychopharmacology (Berl). 2003;166:195201.CrossRefGoogle Scholar
86. Ulloa, RE, Nicolini, H, Fernandez-Guasti, A. Age differences in an animal model of obsessive-compulsive disorder: participation of dopamine: dopamine in an animal model of OCD. Pharmacol Biochem Behav. 2004;78:661666.CrossRefGoogle Scholar
87. Woods, A, Smith, C, Szewczak, M, Dunn, RW, Cornfeldt, M, Corbett, R. Selective serotonin re-uptake inhibitors decrease schedule- induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology (Berl). 1993;112:195198.CrossRefGoogle ScholarPubMed
88. Roehr, J, Woods, A, Corbett, R, Kongsamut, S. Changes in paroxetine binding in the cerebral cortex of polydipsic rats. Eur J Pharmacol. 1995;278:7578.CrossRefGoogle ScholarPubMed
89. Altemus, M, Glowa, JR, Murphy, DL. Attenuation of food-restriction-induced running by chronic fluoxetine treatment. Psychopharmacol Bull. 1993;29:397400.Google ScholarPubMed
90. Altemus, M, Glowa, JR, Galliven, E, Leong, YM, Murphy, DL. Effects of serotonergic agents on food-restriction-induced hyperactivity. Pharmacol Biochem Behav. 1996;53:123131.CrossRefGoogle ScholarPubMed
91. Abe, M, Nakai, H, Tabata, R, Saito, K, Egawa, M. Effect of 5-[3-[((2S)-1,4-benzo-dioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HC1 (MKC-242), a novel 5-HTlA-receptor agonist, on aggressive behavior and marble burying behavior in mice. Jpn J Pharmacol. 1998;76:297304.CrossRefGoogle Scholar
92. Ichimaru, Y, Egawa, T, Sawa, A. 5-HT1A-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice, Jpn J Pharmacol. 1995;68:6570.CrossRefGoogle ScholarPubMed
93. Millan, MJ, Girardon, S, Mullot, J, Brocco, M, Dekeyne, A. Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin 1 (NK1) receptor antagonists. Neuropharmacology. 2002;42:677684.CrossRefGoogle ScholarPubMed
94. Takeuchi, H, Yatsugi, S, Yamaguchi, T. Effect of YM992, a novel antidepressant with selective Serotonin re-uptake inhibitory and 5-HT(2A) receptor antagonistic activity, on a marble-burying behavior test as an obsessive-compulsive disorder model. Jpn J Pharmacol. 2002;90:197200.CrossRefGoogle ScholarPubMed
95. Yamada, K, Wada, E, Yamano, M, et al. Decreased marble burying behavior in female mice lacking neuromedin-B receptor (NMB-R) implies the involvement of NMB/ NMB-R in 5-HT neuron function. Brain Res. 2002;942:7178.CrossRefGoogle ScholarPubMed
96. Archer, T, Fredriksson, A, Lewander, T, Soderberg, U. Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol. 1987;28:242249.CrossRefGoogle ScholarPubMed
97. Broekkamp, CL, Rijk, HW, Joly-Gelouin, D, Lloyd, KL. Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol. 1986;126:223229.CrossRefGoogle ScholarPubMed
98. Gyertyan, I. Analysis of the marble burying response: marbles serve to measure digging rather than evoke burying. Behav Pharmacol. 1995;6:2431.Google ScholarPubMed
99. Njung'e, K, Handley, SL. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav. 1991;38:6367.CrossRefGoogle Scholar
100. Joel, D, Avisar, A. Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res. 2001;123:7787.CrossRefGoogle ScholarPubMed
101. Joel, D, Avisar, A, Doljansky, J. Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the Dl antagonist SCH 23390 or the D2 agonist quinpirole, but not the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav Neurosci. 2001;115:12911300.CrossRefGoogle ScholarPubMed
102. Joel, D, Doljansky, J, Selective alleviation of compulsive lever-pressing in rats by D(1), but not D(2), blockade: possible implications for the involvement of D(1) receptors in obsessive-compulsive disorder. Neuropsychopharmacology. 2003;28:7785.CrossRefGoogle Scholar
103. Man, J, Hudson, AL, Ashton, D, Nutt, DJ. Animal models for obsessive-compulsive disorder. Curr Neuropharmacol. 2004;2:169181.CrossRefGoogle Scholar