Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-p4n5r Total loading time: 0.683 Render date: 2022-06-25T00:23:40.625Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Nutritional Contributions to the CNS Pathophysiology of HIV-1 Infection and Implications for Treatment

Published online by Cambridge University Press:  07 November 2014

Abstract

Nutritional deficiencies are commonplace in patients with human immunodeficiency virus type 1 (HIV-1) infection, and recent research has indicated that nutritional factors may play an important role in the pathogenesis of HIV-1 disease. Although nutritional deficiencies are unlikely to be the primary causative factor in disease progression, they may contribute to cognitive dysfunction, neurologic abnormalities, mood disturbance, and immune dysregulation associated with HIV-1 infection. Furthermore, deficiencies of specific micronutrients have been associated with increased risk of HIV-1–associated mortality. This article will briefly summarize the role of macronutrient deficiency, the interactions of specific micronutrient deficiencies with neuropsychiatrie functioning, and the role of these factors in HIV-1 disease progression. Since recent research has shown that normalization of many nutritional deficits and supplementation beyond normal levels are associated with improvements in neuropsychiatrie functioning, potential treatment implications will also be discussed.

Type
Feature Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baum, MK, Shor-Posner, G. Micronutrient status in relationship to mortality in HIV-1 disease. Nutr Rev. 1998;56:S135S139.CrossRefGoogle ScholarPubMed
2.Chlebowski, RT, Grosvenor, MB, Bernhard, NH, Morales, LS, Bulcavage, LM. Nutritional status, gastrointestinal dysfunction, and survival in patients with AIDS. Am J Gastroenterol. 1989;84:12881293.Google ScholarPubMed
3.Macallan, DC, Noble, C, Baldwin, C, Foskett, M, McManus, T, Griffin, GE. Prospective analysis of patterns of weight change in stage IV human immunodeficiency virus infection. Am J Clin Nutr. 1993;58:417424.CrossRefGoogle ScholarPubMed
4.Centers for Disease Control. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep. 1992;41(No.RR-17):119.Google Scholar
5.Shevitz, AH, Know, TA, Spiegelman, D, Roubenoff, R, Gorbach, SL, Skolnik, PR. Elevated resting energy expenditure among HIV-seropositive persons receiving highly active antiretroviral therapy. AIDS. 1999;13:13511357.CrossRefGoogle ScholarPubMed
6.Baum, MK, Shor-Posner, G, Bonvehi, P, et al.Influence of HIV infection on vitamin status and requirements. Ann N Y Acad Sci. 1992;699:165174.CrossRefGoogle Scholar
7.Baum, M, Cassetti, L, Bonvehi, P, Shor-Posner, G, Lu, Y, Sauberlich, H. Inadequate dietary intake and altered nutrition status in early HIV-1 infection. Nutrition. 1994;10:1620.Google ScholarPubMed
8.Niyongabo, T, Bouchaud, O, Henzel, D, et al.Nutritional status of HIV-seropositive subjects in an AIDS clinic in Paris. Eur J Clin Nutr. 1997;51:637640.CrossRefGoogle Scholar
9.Suttmann, U, Ockenga, J, Selberg, O, Hoogestraat, L, Deicher, H, Muller, MJ. Incidence and prognostic value of malnutrition and wasting in human immunodeficiency virus-infected outpatients. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8:239246.CrossRefGoogle ScholarPubMed
10.Abrams, B, Duncan, D, Hertz-Picciotto, I. A prospective study of dietary intake and acquired immune deficiency syndrome in HIV-seropositive homosexual men. J Acquir Immune Defic Syndr Hum Retrovirol. 1993;6:949958.Google ScholarPubMed
11.Skurnick, JH, Bogden, JD, Baker, H, et al.Micronutrient profiles in HIV-1 infected heterosexual adults. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;12:7583.CrossRefGoogle ScholarPubMed
12.Beach, RS, Mantero-Atienza, E, Shor-Posner, G, et al.Specific nutrient abnormalities in asymptomatic HIV-1 infection. AIDS. 1992;6:701708.CrossRefGoogle ScholarPubMed
13.Eglen, RM, Wong, EHF, Dumuis, A, Bockaert, J. Central 5-HT4 receptors. Trends Pharmacol Sci. 1995;16:391398.CrossRefGoogle ScholarPubMed
14.Hodges, RE, Bean, WB, Ohlson, MA, Bleiler, RE. Factors affecting human antibody response. IV. Pyridoxine deficiency. Am J Clin Nutr. 1962;11:180186.CrossRefGoogle ScholarPubMed
15.Wilkie, F, Shor-Posner, G, Mantero-Atienza, E, et al.Association of vitamin B6 status and reaction time in early HIV-1 infection. Neurological and Neuropsychological Complications of HIV Infection. 1991;2:67.Google Scholar
16.Baldewicz, T, Goodkin, K, Feaster, DJ, et al.Plasma pyridoxine deficiency is related to increased psychological distress in recently bereaved homosexual men. Psychosom Med. 1998;60:297308.CrossRefGoogle ScholarPubMed
17.Shor-Posner, G, Feaster, D, Blaney, NT, et al.Impact of vitamin B6 status on psychological distress in a longitudinal study of HIV-1 infection. Int J Psychiatry Med. 1994;24:209222.CrossRefGoogle Scholar
18.Wurtman, RJ. Food for thought. The Sciences. 1978;18:69.CrossRefGoogle Scholar
19.Park, SB, Coull, JT, McShane, RH, et al.Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology. 1994;33:575588.CrossRefGoogle ScholarPubMed
20.Faustman, WO, Faull, KF, Whiteford, HA, Borchert, C, Csernansky, JG. CSF 5-HIAA, serum Cortisol, and age differentially predict vegetative and cognitive symptoms in depression. Biol Psychiatry. 1990;27:311318.CrossRefGoogle ScholarPubMed
21.Singer, EJ, Wilkins, J, Syndulko, K, et al.Cerebrospinal fluid (CSF) biogenic amines increase and Cortisol levels decrease after zidovudine (AZT) therapy in subjects with AIDS dementia complex (ADC). Neurological and Neuropsychological Complications of HIV Infection. Program and abstracts. 1990;145.Google Scholar
22.Brouwers, P, Heyes, MP, Moss, HA, et al.Quinolinic acid in the cerebrospinal fluid of children with symptomatic human immunodeficiency virus type 1 disease: relationships to clinical status and therapeutic response. J Infect Dis. 1993;168:13801386.CrossRefGoogle ScholarPubMed
23.Sei, S, Saito, K, Stewart, SK, et al.Increased HIV-1 DNA content and quinolinic acid concentration in brain tissues obtained from AIDS patients with HIV encephalopathy. J Infect Dis. 1995;172:638647.CrossRefGoogle ScholarPubMed
24.Heyes, MP, Brew, BJ, Martin, A, et al.Quinolinic acid in the cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol. 1991;29:202209.CrossRefGoogle ScholarPubMed
25.Deijen, JB, van der Beek, EJ, Orlebeke, JF, van der Berg, H. Vitamin B6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology. 1992;109:489496.CrossRefGoogle ScholarPubMed
26.Tang, AM, Graham, NM, Saah, AJ. Effects of micronutrient intake on survival in human immunodeficiency virus type 1 infection. Am J Epidemiol. 1996;143:12441256.CrossRefGoogle ScholarPubMed
27.Schaumburg, H, Kaplan, J, Windebank, A, et al.Sensory neuropathy from pyridoxine abuse: a new megavitamin syndrome. N Engl J Med. 1983;309:445448.CrossRefGoogle ScholarPubMed
28.Bernstein, AL. Vitamin B6 in clinical neurology. Ann N Y Acad Sci. 1990;585:250260.CrossRefGoogle ScholarPubMed
29.Bendich, A, Cohen, M. Vitamin B6 safety issues. Ann N Y Acad Sci. 1990;585:321330.CrossRefGoogle ScholarPubMed
30.Dommisse, J. Subtle vitamin B12 deficiency and psychiatry: a largely unnoticed but devastating relationship? Med Hypotheses. 1991;34:131140.CrossRefGoogle ScholarPubMed
31.Ellis, FR, Nasser, S. A pilot study of vitamin B12 in the treatment of tiredness. Br J Nutr. 1973;30:277283.CrossRefGoogle ScholarPubMed
32.Herbert, V, Das, KC. Folic acid and vitamin B12 In: Shils, ME, Olson, JA, Shike, M, eds. Modern Nutrition in Health and Disease. Philadelphia, Pa: Lea & Febiger; 1994.Google Scholar
33.Lindenbaum, J, Healton, EB, Savage, DG, et al.Neuropsychiatric disorders caused by cobal-amin deficiency in the absence of pernicious anemia or macrocytosis. N Engl J Med. 1988;318:17201728.CrossRefGoogle ScholarPubMed
34.Rule, SAJ, Hooker, M, Costello, C, Luck, W, Hoffbrand, AV. Serum vitamin B12 and transcobalamin levels in early HIV disease. Am J Hematol. 1994;47:167171.CrossRefGoogle ScholarPubMed
35.Beach, RS, Morgan, R, Wilkie, F, et al.Plasma vitamin B12 level as a potential cofactor in studies of human immunodeficiency virus type 1-related cognitive changes. Arch Neurol. 1992;49:501506.CrossRefGoogle ScholarPubMed
36.Herbert, V, Fong, W, Guile, V, Stropler, T. Low holotranscobalamin II is the earliest serum marker for subnormal vitamin Bl2 absorption in patients with AIDS. Am J Hematol. 1990;34:132139.CrossRefGoogle Scholar
37.Healton, EB, Savage, DG, Brust, JC, Garrett, TJ, Lindenbaum, J. Neurologic aspects of cobal-amin deficiency. Medicine. 1991;70:229245.CrossRefGoogle ScholarPubMed
38.Saracaceanu, E, Tramoni, AV, Henry, JM. An association between subcortical dementia and pernicious anemia—a psychiatric mask. Compr Psychiatry. 1997;38:349351.CrossRefGoogle ScholarPubMed
39.Baldewicz, TT, Goodkin, K, Blaney, NT, et al.Cobalamin level is related to self-reported and clinically rated mood and to syndromal depression in bereaved HIV-1+ and HIV-1-homosexual men. J Psychosom Res. 2000;48:177185.CrossRefGoogle ScholarPubMed
40.Shor-Posner, G, Morgan, R, Wilkie, F, Eisdorfer, C, Baum, MK. Plasma cobalamin levels affect information processing speed in a longitudinal study of HIV-1 disease. Arch Neurol. 1995;52:195198.CrossRefGoogle Scholar
41.Bell, IR, Edman, JS, Miller, J, et al.Relationship of normal serum vitamin B12 and folate levels to cognitive test performance in subtypes of geriatric major depression. J Geriatr Psychiatry Neurol. 1990;3:98105.Google ScholarPubMed
42.Bell, IR, Edman, JS, Morrow, FD, et al.B complex vitamin patterns in geriatric and young adult inpatients with major depression. J Am Geriatr Soc. 1991;39:252257.CrossRefGoogle Scholar
43.Perkins, DO, Stern, RA, Golden, RN, Murphy, C, Naftolowitz, D, Evans, DL. Mood disorders in HIV infection: prevalence and risk factors in a nonepicenter of the AIDS epidemic. Am J Psychiatry. 1994;151:233236.Google Scholar
44.Robertson, KR, Stern, RA, Hall, CD, et al.Vitamin B12 deficiency and nervous system disease in HIV infection. Arch Neurol. 1993;50:807811.CrossRefGoogle ScholarPubMed
45.Newbold, HL. Vitamin B12: placebo or neglected therapeutic tool? Med Hypotheses. 1989;28:155164.CrossRefGoogle ScholarPubMed
46.Carethers, M. Diagnosing vitamin B12 deficiency: a common geriatric disorder. Geriatrics. 1988;43:89–94, 105–107, 111112.Google ScholarPubMed
47.Hector, M, Burton, JR. What are the psychiatric manifestations of vitamin B12 deficiency? J Am Geriatr Soc. 1988;36:11051112.CrossRefGoogle ScholarPubMed
48.Levitt, AJ, Joffe, RT. Vitamin B12 in psychotic depression. Br J Psychiatry. 1988;153:266267.CrossRefGoogle ScholarPubMed
49.Geagea, K, Ananth, J. Response of a psychiatric patient to vitamin B12 therapy. Dis Nerv Sys. 1975;36:343344.Google ScholarPubMed
50.Verbanck, PM, Oliver, L. Changing psychiatric symptoms in a patient with vitamin B12 deficiency. J Clin Psychiatry. 1991;52:182183.Google Scholar
51.Evans, DL, Edelsohn, GA, Golden, RN. Organic psychosis without anemia or spinal cord symptoms in patients with vitamin B12 deficiency. Am J Psychiatry. 1983;140:218221.Google ScholarPubMed
52.Phillips, SL, Kahaner, KP. An unusual presentation of vitamin B12 deficiency. Am J Psychiatry. 1988;145:529.Google ScholarPubMed
53.Zucker, DK, Livingston, RL, Nakra, R, Clayton, PJ. B12 deficiency and psychiatric disorders: case report and literature review. Biol Psychiatry. 1981;16:197205.Google ScholarPubMed
54.Tan, SV, Guiloff, RJ. Hypothesis on the pathogenesis of vacuolar myelopathy, dementia, and peripheral neuropathy in AIDS. J Neurol Neurosurg Psychiatry. 1998;65:2328.CrossRefGoogle Scholar
55.DiRocco, A, Tagliati, M, Danisis, F, Dorfman, D, Noise, J, Simpson, DM. A pilot study of L-methionine for the treatment of AIDS-associated myelopathy. Neurology. 1988;51:266268.CrossRefGoogle Scholar
56.Bottiglieri, T. Ademetionine (S-adenosylmethionine) neuropharmacology: implications for drug therapies in psychiatric and neurologic disorders. Opin Invest Drugs. 1997;6:417426.CrossRefGoogle Scholar
57.Dorfman, D, DiRicco, A, Simpson, D, Tagliati, M, Tanners, L, Moise, J. Oral methionine may improve neuropsychological function in patients with AIDS myelopathy: results of an open-label trial. AIDS. 1997;11:10661067.Google ScholarPubMed
58.Surtees, R, Hyland, K, Smith, I. Central-nervous-system methyl-group metabolism in children with neurological complications of HIV infection. Lancet. 1990;335:619621.CrossRefGoogle ScholarPubMed
59.Kieburtz, KD, Giang, DW, Schiffer, RB, Vakil, N. Abnormal vitamin B12 metabolism in human immunodeficiency virus infection. Arch Neurol. 1991;48:312314.CrossRefGoogle ScholarPubMed
60.Burkes, RL, Cohen, H, Krailo, M, Sinow, RM, Carmel, R. Low serum cobalamin levels occur frequently in the acquired immune deficiency syndrome and related disorders. Eur J Haematol. 1987;38:141147.CrossRefGoogle ScholarPubMed
61.Baum, MK, Shor-Posner, G, Lu, Y, et al.Micronutrients and HIV-1 disease progression. AIDS. 1995;9:10511056.CrossRefGoogle ScholarPubMed
62.Wickramasinghe, SN. Morphology, biology, and biochemistry of cobalamin- and folate-deficient bone marrow cells. Baillieres Clin Haematol. 1995;8:441459.CrossRefGoogle ScholarPubMed
63.Tang, AM, Graham, NM, Chandra, RK, Saah, AJ. Low serum B12 concentrations are associated with faster human immunodeficiency virus type 1 (HIV-1) disease progression. J Nutr. 1997;127:345351.CrossRefGoogle Scholar
64.Nijst, TQ, Wevers, RA, Schoonderwaldt, HC, Hommes, OR, de Haan, AFJ. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J Neurol Neurosurg Psychiatry. 1990;53:951954.CrossRefGoogle ScholarPubMed
65.Altay, C, Cetin, M. Oral treatment in selective vitamin B12 malabsorption. J Pediatr Hematol Oncol. 1997;19:245246.CrossRefGoogle ScholarPubMed
66.Young, SN. The use of dietary components in the study of factors controlling affect in humans: a review. J Psychiatry Neurosci. 1993;18:235244.Google Scholar
67.Beach, RS, Mantero-Atienza, E, Eisdorfer, C, Fordyce-Baum, MK. Altered folate metabolism in early HIV infection. JAMA. 1988;259:519.CrossRefGoogle ScholarPubMed
68.Coodley, GO, Coodley, MK, Nelson, HD, Loveless, MO. Micronutrient concentrations in the HIV wasting syndrome. AIDS. 1993;7:595600.CrossRefGoogle ScholarPubMed
69.Abou-Saleh, MT, Coppen, A. Serum and red blood cell folate in depression. Acta Psychiatr Scand. 1989;80:7882.CrossRefGoogle ScholarPubMed
70.Wesson, VA, Levitt, AJ, Joffe, RT. Change in folate status with antidepressant treatment. Psychiatry Res. 1994;53:313322.CrossRefGoogle ScholarPubMed
71.Bell, IR, Edman, JS, Marby, DW, et al.Vitamin B12 and folate status in acute geropsychiatric inpatients: affective and cognitive characteristics of a vitamin nondeficient population. Biol Psychiatry. 1990;27:125137.CrossRefGoogle ScholarPubMed
72.Fava, M, Borus, JS, Alpert, JE, Nierenberg, AA, Rosenbaum, JF, Bottiglieri, T. Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry. 1997;154:426428.Google ScholarPubMed
73.Riedel, WJ, Jorissen, BL. Nutrients, age and cognitive function. Curr Opin Clin Nutr Metab Care. 1998;1:579585.CrossRefGoogle ScholarPubMed
74.Riggs, KM, Spiro, A III, Tucker, K, Rush, D. Relations of vitamin B12, vitamin B6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996;63:306314.CrossRefGoogle ScholarPubMed
75.Ebly, EM, Schaefer, JP, Campbell, NR, Hogan, DB. Folate status, vascular disease and cognition in elderly Canadians. Age Ageing. 1998;27:485491.CrossRefGoogle ScholarPubMed
76.LaRue, A, Koehler, KM, Wayne, SJ, Chiulli, SJ, Haaland, KY, Garry, PJ. Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr. 1997;65:2029.CrossRefGoogle Scholar
77.Romero-Alvira, D, Roche, E. The keys of oxidative stress in acquired immune deficiency syndrome apoptosis. Med Hypotheses. 1998;51:169173.CrossRefGoogle ScholarPubMed
78.Favier, A, Sappey, C, Leclerc, P, Faure, P, Micoud, M. Antioxidant status and lipid peroxidation in patients infected with HIV. Chem Biol Interact. 1994;91:165180.CrossRefGoogle Scholar
79.Baruchel, S, Wainberg, MA. The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus. J Leukoc Biol. 1992;52:111114.CrossRefGoogle ScholarPubMed
80.Semba, RD, Graham, NMH, Caiaffa, WT, Margolick, JB, Clement, L, Vlahov, D. Increased mortality associated with vitamin A deficiency during human immunodeficiency virus type 1 infection. Arch Intern Med. 1993;153:21492154.CrossRefGoogle ScholarPubMed
81.Allard, JP, Aghdassi, E, Chau, J, et al.Effects of vitamin E and C supplementation on oxidative stress and viral load in HIV-infected subjects. AIDS. 1998;12:16531659.CrossRefGoogle Scholar
82.Perrig, WJ, Perrig, P, Stahelin, HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc. 1997;45:718724.CrossRefGoogle ScholarPubMed
83.Constans, J, Seigneur, M, Blann, AD, et al.Effect of the antioxidants selenium and beta-carotene on HIV-related endothelium dysfunction. Thromb Haemost. 1998;80:10151017.Google ScholarPubMed
84.Kelly, P, Musonda, R, Kafwembe, E, Kaetano, L, Keane, E, Farthing, M. Micronutrient supplementation in the AIDS diarrhea-wasting syndrome in Zambia: a randomized controlled trial. AIDS. 1999;13:495500.CrossRefGoogle Scholar
85.Pacht, ER, Diaz, P, Clanton, T, Hart, J, Gadek, JE. Serum vitamin E decreases in HIV-seropositive subjects over time. J Lab Clin Med. 1997;130:293296.CrossRefGoogle ScholarPubMed
86.Jordao, AA Jr, Silveira, S, Figueiredo, JF, Vannucchi, H. Urinary excretion and plasma vitamin E levels in patients with AIDS. Nutrition. 1998;14:423426.CrossRefGoogle Scholar
87.Joseph, JA, Shukitt-Hale, B, Denisova, NA, et al.Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci. 1998;18:80478055.CrossRefGoogle ScholarPubMed
88.Keaney, JF Jr, Simon, DI, Freedman, JE. Vitamin E and vascular homeostatis: implications for atherosclerosis. FASEB J. 1999;13:965975.CrossRefGoogle Scholar
89.Carrasquedo, F, Glanc, M, Fraga, CG. Tissue damage in acute myocardial infarction: selective protection by vitamin E. Free Radic Biol Med. 1999;26:15871590.CrossRefGoogle ScholarPubMed
90.Motoyama, T, Kawano, H, Kugiyama, K, et al.Vitamin E administration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. J Am Coll Cardiol. 1998;32:16721679.CrossRefGoogle ScholarPubMed
91.Motram, P, Shige, H, Nestel, P. Vitamin E improves arterial compliance in middle-aged men and women. Atherosclerosis. 1999;145:399404.CrossRefGoogle Scholar
92.Chariot, P, Perchet, H, Monnet, I. Dilated cardiomyopathy in HIV-infected patients. N Engl J Med. 1999;340:732.Google ScholarPubMed
93.Tang, AM, Graham, NM, Semba, RD, Saah, AJ. Association between serum vitamin A and E levels and HIV-1 disease progression. AIDS. 1997;11:613620.CrossRefGoogle Scholar
94.Gogu, SR, Beckman, BS, Rangan, SR, Agrawal, KC. Increased therapeutic efficacy of zidovudine in combination with vitamin E. Biochem Biophys Res Commun. 1989;165:401407.CrossRefGoogle ScholarPubMed
95.Adler, LA, Peselow, E, Rotrosen, J, et al.Vitamin E treatment of tardive dyskinesia. Am J Psychiatry. 1993;150:14051407.Google ScholarPubMed
96.Egan, MF, Hyde, TM, Albers, GW, et al.Treatment of tardive dyskinesia with vitamin E. Am J Psychiatry 1992;149:773777.Google ScholarPubMed
97.Constans, J, Conri, C, Sergeant, C. Selenium and HIV infection. Nutrition. 1999;15:719720.Google ScholarPubMed
98.Chariot, P, Dubreuil-Lemaire, M-L, Zhou, JY, et al.Muscle involvement in human immunodeficiency virus-infected patients is associated with marked selenium deficiency. Muscle Nerve. 1997;20:386389.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
99.Kiremidjian-Schumacher, L, Stotzky, G. Selenium and immune responses. Environ Res. 1987;42:277303.CrossRefGoogle ScholarPubMed
100.Look, MP, Rockstroh, JK, Rao, GS, Kreuzer, KA, Spengler, U, Sauerbruch, T. Serum selenium vs lymphocyte subsets and markers of disease progression and inflammatory response in human immunodeficiency virus-1 infection. Biol Trace Elem Res. 1997;56:3141.CrossRefGoogle Scholar
101.Baum, MK, Shor-Posner, G, Lai, S, et al.High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15:370374.CrossRefGoogle ScholarPubMed
102.Campa, A, Shor-Posner, G, Indacochea, F, et al.Mortality risk in selenium-deficient HIV-positivie children. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20:508513.CrossRefGoogle ScholarPubMed
103.Koch, J, Neal, EA, Schlott, MJ, et al.Zinc levels and infections in hospitalized patients with AIDS. Nutrition. 1996;12:515518.CrossRefGoogle ScholarPubMed
104.Maes, M, D'Haese, PC, Scharpe, S, D'Hondt, P, Cosyns, P, De Broe, ME. Hypozincemia in depression. J Affect Disord. 1994;31:135140.CrossRefGoogle ScholarPubMed
105.Maes, M, Vandoolaeghe, E, Neels, H, et al.Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry. 1997;42:349358.CrossRefGoogle ScholarPubMed
106.Baldewicz, T, Goodkin, K, Feaster, DJ, Blaney, NT, Shor-Posner, G, Baum, M. Zinc deficiency is related to depressed mood in recently bereaved HIV-1+ and HIV-1− homosexual men. Psychosom Med. 1998;60:101.CrossRefGoogle Scholar
107.Ripa, S, Ripa, R. Zinc and immune function. Minerva Med. 1995;86:315318.Google ScholarPubMed
108.Mossad, SB, Macknin, ML, Medendorp, SV, Mason, P. Zinc gluconate lozenges for treating the common cold, a randomized, double-blind, placebo-controlled study. Ann Intern Med. 1996;125:8188.CrossRefGoogle ScholarPubMed
109.Graham, NM, Sorenson, D, Odaka, N, et al.Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDS. J Acquir Immune Defic Syndr Hum Retrovirol. 1991;4:976980.Google ScholarPubMed
110.Fabris, N, Mocchegiani, E, Galli, M, Irato, L, Lazzarin, A, Moroni, M. AIDS, zinc deficiency, and thymic hormone failure. JAMA. 1988;259:839840.CrossRefGoogle ScholarPubMed
111.Mocchegiani, E, Muzzioli, M, Gaetti, R, Veccia, S, Viticchi, C, Scalise, G. Contribution of zinc to reduce CD4+ risk factor for “severe” infection relapse in aging: parellelism with HIV. Int J Immunopharmacol. 1999;21:271281.CrossRefGoogle Scholar
112.Fabris, N. Neuroendocrine-immune aging: an integrative view on the role of zinc. Ann N Y Acad Sci. 1994;719:353368.CrossRefGoogle ScholarPubMed
113.Begin, ME, Manku, MS, Horrobin, DF. Plasma fatty acid levels in patients with acquired immune deficiency syndrome and in controls. Prostaglandins Leukot Essent Fatty Acids. 1989;37:135137.CrossRefGoogle ScholarPubMed
114.Kinchington, D, Randall, S, Winther, M, Horrobin, D. Lithium gamma-linolenate–induced cytotoxicity against cells chronically infected with HIV-1. FEBS Lett. 1993;330:219221.CrossRefGoogle ScholarPubMed
115.Yehuda, S, Rabinovitz, S, Mostofsky, DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res. 1999;56:565570.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
116.Kaplan, RJ, Greenwood, CE. Dietary saturated fatty acids and brain function. Neurochem Res. 1998;23:615626.CrossRefGoogle ScholarPubMed
117.Stoll, AL, Severus, WE, Freeman, MP, et al.Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry. 1999;56:407412.CrossRefGoogle ScholarPubMed
118.Crook, MA, Mir, N. Abnormal lipids and the acquired immunodeficiency syndrome: is there a problem and what should we do about it? Int J STD AIDS. 1999;10:353356.CrossRefGoogle Scholar
119.Shor-Posner, G, Basit, A, Lu, Y, et al.Hypocholesterolemia is associated with immune dysfunction in early human immunodeficiency virus-1 infection. Am J Med. 1993;94:515519.CrossRefGoogle ScholarPubMed
120.Grunfeld, C, Pang, M, Doerrler, W, Shigenaga, JK, Jensen, P, Feingold, KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74:10451052.Google ScholarPubMed
121.Zangerle, R, Sarcletti, M, Gallati, H, Reibnegger, G, Wachter, H, Fuchs, D. Decreased plasma concentrations of HDL cholesterol in HIV-infected individuals are associated with immune activation. J Acquir Immune Defic Syndr Hum Retrovirol. 1994;7:11491156.Google ScholarPubMed
122.Shor-Posner, G, Baldewicz, T, Feaster, D, et al.Psychological distress in HIV-1 disease in relationship to hypocholesterolemia. Int J Psychiatry Med. 1997;27:159171.CrossRefGoogle ScholarPubMed
123.Heron, DS, Shinitsky, M, Hershkowitz, M, Samuel, D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc Natl Acad Sci U S A. 1980;77:76437647.CrossRefGoogle ScholarPubMed
124.Dong, KL, Bausserman, LL, Flynn, MM, et al.Changes in body habitus and serum lipid abnormalities in HIV-positive women on highly active antiretroviral therapy (HAART). J Acquir Immune Defic Syndr Hum Retrovirol. 1999;21:107113.Google Scholar
125.Periard, D, Telenti, A, Sudre, P, et al.Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors: the Swiss HIV Cohort study. Circulation. 1999;100:700705.CrossRefGoogle ScholarPubMed
126.Echevarria, KL, Hardin, TC, Smith, JA. Hyperlipidemia associated with protease inhibitor therapy. Ann Pharmacother. 1999;33:859863.CrossRefGoogle ScholarPubMed
127.Martinez, E, Conget, I, Lozano, L, Casamitjana, R, Gatell, JM. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS. 1999;13:805810.CrossRefGoogle ScholarPubMed
128.Baum, MK, Shor-Posner, G, Zhang, G, et al.HIV-1 infection in women is associated with severe nutritional deficiencies. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;16:272278.CrossRefGoogle ScholarPubMed
129.Semba, RD, Farzadegan, H, Vlahov, D. Vitamin A levels and human immunodeficiency virus load in injection drug users. Clin Diagn Lab Immunol. 1997;4:9395.Google ScholarPubMed
130.Winick, M. Malnutrition and Brain Development. New York, NY: Oxford University Press; 1976.Google Scholar
131.Cordero, ME, Trejo, M, Garcia, E, Barros, T, Colombo, M. Dendritic development in the neocortex of adult rats subjected to postnatal malnutrition. Early Hum Dev. 1985;12:309321.CrossRefGoogle ScholarPubMed
132.Galler, G, Ramsey, F. Influence of early malnutrition on subsequent behavioral development: child's behavior at home. J Am Acad Child Psychiatry. 1985;24:5864.CrossRefGoogle ScholarPubMed
133.Stoch, MB, Smythe, PM. 15-year developmental study on effects of severe undernutrition during infancy on subsequent physical growth and intellectual functioning. Arch Dis Child. 1976;51:327336.CrossRefGoogle ScholarPubMed
134.Cunningham-Rundles, S, Kim, SH, Dnistrian, A, et al.Micronutrient and cytokine interaction in congential pediatric HIV infection. J Nutr. 1996;126:S2674S2679.CrossRefGoogle Scholar
135.Periquet, BA, Jammes, NM, Lambert, WE, et al.Micronutrient levels in HIV-1-infected children. AIDS. 1995;9:887893.CrossRefGoogle ScholarPubMed
136.Brouwers, P, DeCarli, C, Heyes, MP, et al.Neurobehavioral manifestations of symptomatic HIV-1 disease in children: can nutritional factors play a role? J Nutr. 1996;126:S2651S2662.CrossRefGoogle ScholarPubMed
137.Agostani, C, Zuccotti, GV, Riva, E, et al.Low levels of linoleic acid in plasma total lipids of HIV-1 seropositive children. J Am Coll Nutr. 1998;17:2529.CrossRefGoogle Scholar
138.Brouwers, P, DeCarli, C, Tudor-Williams, G, Civitello, L, Moss, H, Pizzo, P. Interrelations among patterns of change in neurocognitive, CT brain imaging, and CD4 measures associated with antiretroviral therapy in children with symptomatic HIV infection. Adv Neuroimmunol. 1994;4:223231.CrossRefGoogle Scholar
139.Dolan, RJ, Mitchell, J, Wakeling, A. Structural brain changes in patients with anorexia nervosa. Psycholl Med. 1988;18:349353.CrossRefGoogle ScholarPubMed
140.Grantham-McGregor, SM, Powell, CA, Walker, SP, Himes, JH. Nutritional supplementation, psychosocial stimulation, and mental development of stunted children: the Jamaican Study. Lancet. 1991;338:15.CrossRefGoogle ScholarPubMed
141.Brouwers, P, Moss, H, Wolters, P, et al.Effect of continuous-infusion zidovudine therapy on neuro-psychologic functioning in children with symptomatic human immuno-deficiency virus infection. J Pediatr. 1990;117:980985.CrossRefGoogle Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nutritional Contributions to the CNS Pathophysiology of HIV-1 Infection and Implications for Treatment
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nutritional Contributions to the CNS Pathophysiology of HIV-1 Infection and Implications for Treatment
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nutritional Contributions to the CNS Pathophysiology of HIV-1 Infection and Implications for Treatment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *