Skip to main content Accessibility help
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.766 Render date: 2021-10-19T16:25:14.425Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The diagnosis and evaluation of dementia and mild cognitive impairment with emphasis on SPECT perfusion neuroimaging

Published online by Cambridge University Press:  29 August 2012

Theodore A. Henderson*
The Synaptic Space, Denver, Colorado, USA
*Address for correspondence: Theodore A. Henderson, MD, PhD, The Synaptic Space, 3979 E. Arapahoe Road, Suite 200, Centennial, CO 80112. (Email


As the world population ages, the incidence of dementing illnesses will dramatically increase. The number of people afflicted with dementia is expected to quadruple in the next 50 years. Since the neuropathology of the dementias precedes clinical symptoms often by several years, earlier detection and intervention could be key steps to mitigating the progression and burden of these diseases. This review will explore methods of evaluating, differentiating, and diagnosing the multiple forms of dementia. Particular emphasis will be placed on the diagnosis of mild cognitive impairment—the precursor to dementia. Anatomical imaging; cerebrospinal fluid markers; functional neuroimaging, such as positron emission tomography and single photon emission tomography; and molecular imaging, such as amyloid marker imaging, will be assessed in terms of sensitivity and specificity. Cost will also be a consideration, as the growing population afflicted with dementia represents an increasingly large financial encumbrance to the healthcare systems of every nation. In the face of expensive new markers and limited availability of cyclotrons, single photon emission computer tomography (SPECT) provides relatively high sensitivity and specificity at a comparatively low overall cost.

Review Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Cummings, JL. The Neuropsychiatry of Alzheimer's Disease and Related Dementias. London: Martin Dunitz, Ltd; 2003.CrossRefGoogle Scholar
2.Ferri, CP, Prince, M, Brayne, C, etal. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005; 366(9503): 21122117.CrossRefGoogle ScholarPubMed
3.Jorm, AF. Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias. Eur Arch Psychiatry Clin Neurosci. 1991; 240(4–5): 218222.CrossRefGoogle ScholarPubMed
4.Hebert, LE, Scherr, PA, Bienias, JL, Bennett, DA, Evans, DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003; 60(8): 11191122.CrossRefGoogle ScholarPubMed
5.Small, GW. What does imaging add to the management of Alzheimer's disease? CNS Spectr. 2004; 9(7 Suppl 5): 2023.CrossRefGoogle ScholarPubMed
6.Silverman, DH, Small, GW, Chang, CY, etal. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001; 286(17): 21202127.CrossRefGoogle ScholarPubMed
7. Kantarci K, Kemp BJ, Lowe VL. Glucose metabolic patterns in amnestic mild cognitive impairment and Alzheimer's disease: an FDG-PET study. 9th International Conference on Alzheimer's Disease and Related Disorders; July 17, 2004; Philadelphia, PA.Google Scholar
8.Bonte, FJ, Weiner, MF, Bigio, EH, White, CL III. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology. 1997; 202(3): 793797.CrossRefGoogle ScholarPubMed
9.Camargo, EE. Brain SPECT in neurology and psychiatry. J Nucl Med. 2001; 42(4): 611623.Google ScholarPubMed
10.Silverman, DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004; 45(4): 594607.Google Scholar
11.Villemagne, VL, Ong, K, Mulligan, RS, etal. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011; 52(8): 12101217.CrossRefGoogle ScholarPubMed
12.Bohnen, NI, Djang, DS, Herholz, K, Anzai, Y, Minoshima, S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012; 53(1): 5971.CrossRefGoogle ScholarPubMed
13. Pavel D, Devore-Best S, Craita I. Routine use of high resolution brain SPECT and multiple display modes for dementia differential and follow-up. 9th International Conference on Alzheimer's Disease and Related Disorders; July 17, 2004; Philadelphia, PA.Google Scholar
14.Foster, NL, Heidebrink, JL, Clark, CM, etal. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007; 130(Pt 10): 26162635.CrossRefGoogle ScholarPubMed
15.Lim, SM, Katsifis, A, Villemagne, VL, etal. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009; 50(10): 16381645.CrossRefGoogle ScholarPubMed
16.Nobili, F, Frisoni, GB, Portet, F, etal. Brain SPECT in subtypes of mild cognitive impairment: findings from the DESCRIPA multicenter study. J Neurol. 2008; 255(9): 13441353.CrossRefGoogle ScholarPubMed
17.Rowe, CC, Villemagne, VL. Brain amyloid imaging. J Nucl Med. 2011; 52(11): 17331740.Google ScholarPubMed
18.Pickut, BA, Saerens, J, Marien, P, etal. Discriminative use of SPECT in frontal lobe-type dementia versus (senile) dementia of the Alzheimer's type. J Nucl Med. 1997; 38(6): 929934.Google ScholarPubMed
19.Van Heertum, RL, Drocea, C, Ichise, M, Lobotesis, K, Fawwaz, RA. Single photon emission CT and positron emission tomography in the evaluation of neurologic disease. Radiol Clin North Am. 2001; 39(5): 10071033.CrossRefGoogle ScholarPubMed
20.Miller, BL, Cummings, JL, Villanueva-Meyer, J, etal. Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology. 1991; 41(9): 13741382.CrossRefGoogle ScholarPubMed
21.Villemagne, VL, Pike, KE, Chetelat, G, etal. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011; 69(1): 181192.CrossRefGoogle ScholarPubMed
22.Jack, CR Jr; Wiste, HJ, Vemuri, P, etal. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain. 2010; 133(11): 33363348.CrossRefGoogle ScholarPubMed
23.Kantarci, K, Jack, CR Jr. Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am. 2003; 13(2): 197209.CrossRefGoogle Scholar
24.Mistur, R, Mosconi, L, Santi, SD, etal. Current challenges for the early detection of Alzheimer's disease: brain imaging and CSF studies. J Clin Neurol. 2009; 5(4): 153166.CrossRefGoogle ScholarPubMed
25.Jagust, W, Thisted, R, Devous, MD Sr., etal. SPECT perfusion imaging in the diagnosis of Alzheimer's disease: a clinical-pathologic study. Neurology. 2001; 56(7): 950956.CrossRefGoogle Scholar
26.Samuels, SC, Grossman, H. Emerging therapeutics for Alzheimer's disease: an avenue of hope. CNS Spectr. 2003; 8(11): 834845.CrossRefGoogle ScholarPubMed
27.Jellinger, KA, Bancher, C. Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl. 1998; 54: 7795.CrossRefGoogle ScholarPubMed
28.Price, JL, Davis, PB, Morris, JC, White, DL. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol Aging. 1991; 12(4): 295312.CrossRefGoogle ScholarPubMed
29.Mirra, SS, Heyman, A, McKeel, D, etal. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II: standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991; 41(4): 479486.CrossRefGoogle Scholar
30.Rozemuller, JM, Stam, FC, Eikelenboom, P. Acute phase proteins are present in amorphous plaques in the cerebral but not in the cerebellar cortex of patients with Alzheimer's disease. Neurosci Lett. 1990; 119(1): 7578.CrossRefGoogle Scholar
31.Le, TV, Crook, R, Hardy, J, Dickson, DW. Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol. 2001; 60(11): 10511061.CrossRefGoogle ScholarPubMed
32.McKhann, G, Drachman, D, Folstein, M, etal. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34(7): 939944.CrossRefGoogle ScholarPubMed
33.Dubois, B, Feldman, HH, Jacova, C, etal. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007; 6(8): 734746.CrossRefGoogle Scholar
34.Knopman, DS, DeKosky, ST, Cummings, JL, etal. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): 11431153.CrossRefGoogle ScholarPubMed
35.Jagust, W, Reed, B, Mungas, D, Ellis, W, DeCarli, C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007; 69(9): 871877.CrossRefGoogle ScholarPubMed
36.Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 1997; 20(4): 154159.CrossRefGoogle ScholarPubMed
37.Kim, J, Basak, JM, Holtzman, DM. The role of apolipoprotein E in Alzheimer's disease. Neuron. 2009; 63(3): 287303.CrossRefGoogle ScholarPubMed
38.Ravona-Springer, R, Davidson, M, Noy, S. The role of cardiovascular risk factors in Alzheimer's disease. CNS Spectr. 2003; 8(11): 824833.CrossRefGoogle ScholarPubMed
39.Wu, CC, Mungas, D, Eberling, JL, Reed, BR, Jagust, WJ. Imaging Interactions between Alzheimer's disease and cerebrovascular disease. Ann N Y Acad Sci. 2002; 977: 403410.CrossRefGoogle ScholarPubMed
40.Hanyu, H, Shimuzu, S, Tanaka, Y, etal. Cerebral blood flow patterns in Binswanger's disease: a SPECT study using three-dimensional stereotactic surface projections. J Neurol Sci. 2004; 220(1–2): 7984.CrossRefGoogle ScholarPubMed
41.Talbot, PR, Goulding, PJ, Lloyd, JJ, etal. Inter-relation between “classic” motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry. 1995; 58(5): 541547.CrossRefGoogle ScholarPubMed
42.Tranfaglia, C, Palumbo, B, Siepi, D, Sinzinger, H, Parnetti, L. Semi-quantitative analysis of perfusion of Brodmann areas in the differential diagnosis of cognitive impairment in Alzheimer's disease, fronto-temporal dementia and mild cognitive impairment. Hell J Nucl Med. 2009; 12(2): 110114.Google ScholarPubMed
43.Pickering-Brown, SM, Baker, M, Nonaka, T, etal. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the tau gene. Brain. 2004; 127(Pt 6): 14151426.CrossRefGoogle ScholarPubMed
44.Bronner, IF, ter Meulen, BC, Azmani, A, etal. Hereditary Pick's disease with the G272 V tau mutation shows predominant three-repeat tau pathology. Brain. 2005; 128(Pt 11): 26452653.CrossRefGoogle Scholar
45.Tateno, M, Kobayashi, S, Saito, T. Imaging improves diagnosis of dementia with Lewy bodies. Psychiatry Investigation. 2009; 6(4): 233240.CrossRefGoogle ScholarPubMed
46.Tateno, M, Kobayashi, S, Shirasaka, T, etal. Comparison of the usefulness of brain perfusion SPECT and MIBG myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2008; 26(5): 453457.CrossRefGoogle Scholar
47.Yoshita, M, Taki, J, Yokoyama, K, etal. Value of 123I-MIBG radioactivity in the differential diagnosis of DLB from AD. Neurology. 2006; 66(12): 18501854.CrossRefGoogle ScholarPubMed
48.Tateno, F, Sakakibara, R, Kishi, M, etal. Sensitivity and specificity of metaiodobenzylguanidine (MIBG) myocardial accumulation in the diagnosis of Lewy body diseases in a movement disorder clinic. Parkinsonism Relat Disord. 2011; 17(5): 395397.CrossRefGoogle Scholar
49.Fann, JR, Burington, B, Leonetti, A, etal. Psychiatric illness following traumatic brain injury in an adult health maintenance organization population. Arch Gen Psychiatry. 2004; 61(1): 5361.CrossRefGoogle Scholar
50.Guskiewicz, KM, Marshall, SW, Bailes, J, etal. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007; 39(6): 903909.CrossRefGoogle ScholarPubMed
51.Guskiewicz, KM, Marshall, SW, Bailes, J, etal. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005; 57(4): 719726.CrossRefGoogle ScholarPubMed
52.McKee, AC, Cantu, RC, Nowinski, CJ, etal. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009; 68(7): 709735.CrossRefGoogle ScholarPubMed
53.Omalu, BI, Hamilton, RL, Kamboh, MI, DeKosky, ST, Bailes, J. Chronic traumatic encephalopathy (CTE) in a National Football League Player: case report and emerging medicolegal practice questions. J Forensic Nurs. 2010; 6(1): 4046.CrossRefGoogle Scholar
54.Omalu, BI, DeKosky, ST, Hamilton, RL, etal. Chronic traumatic encephalopathy in a National Football League player: part II. Neurosurgery. 2006; 59(5): 10861092.CrossRefGoogle Scholar
55.Omalu, BI, DeKosky, ST, Minster, RL, etal. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery. 2005; 57(1): 128134.CrossRefGoogle Scholar
56. Schwarz A. Dementia risk seen in players in NFL study. The New York Times. 2009, Sep. 30.Google Scholar
57. Henderson TA. Traumatic brain injury in professional American football players. 2012. Unpublished work.Google Scholar
58.Amen, DG, Newberg, A, Thatcher, R, etal. Impact of playing American professional football on long-term brain function. J Neuropsychiatry Clin Neurosci. 2011; 23(1): 98106.CrossRefGoogle ScholarPubMed
59.Lopez, OL, Jagust, WJ, DeKosky, ST, etal. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol. 2003; 60(10): 13851389.CrossRefGoogle ScholarPubMed
60.Petersen, RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256(3): 183194.CrossRefGoogle ScholarPubMed
61.Bennett, DA, Wilson, RS, Schneider, JA, etal. Natural history of mild cognitive impairment in older persons. Neurology. 2002; 59(2): 198205.CrossRefGoogle ScholarPubMed
62.Boyle, PA, Wilson, RS, Aggarwal, NT, Tang, Y, Bennett, DA. Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology. 2006; 67(3): 441445.CrossRefGoogle ScholarPubMed
63.Trojanowski, JQ, Vandeerstichele, H, Korecka, M, etal. Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects. Alzheimers Dement. 2010; 6(3): 230238.CrossRefGoogle ScholarPubMed
64. Henderson TA. Neuroimaging updates on dementias and parkinsonian syndromes. Society of Nuclear Medicine Webinar, April 19, 2012. Scholar
65.Jack, CR Jr., Knopman, DS, Jagust, WJ, etal. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010; 9(1): 119128.CrossRefGoogle ScholarPubMed
66.Fagan, AM, Holtzman, DM. Cerebrospinal fluid biomarkers of Alzheimer's disease. Biomark Med. 2010; 4(1): 5163.CrossRefGoogle ScholarPubMed
67.Mattsson, N, Blennow, K, Zetterberg, H. CSF biomarkers: pinpointing Alzheimer pathogenesis. Ann N Y Acad Sci. 2009; 1180: 2835.CrossRefGoogle ScholarPubMed
68.Aluise, CD, Sowell, RA, Butterfield, DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. Biochim Biophys Acta. 2008; 1782(10): 549558.CrossRefGoogle ScholarPubMed
69.Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 2004; 1(2): 213225.CrossRefGoogle ScholarPubMed
70.Blennow, K, de Leon, MJ, Zetterberg, H. Alzheimer's disease. Lancet. 2006; 368(9533): 387403.CrossRefGoogle ScholarPubMed
71.Blennow, K, Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2003; 2(10): 605613.CrossRefGoogle ScholarPubMed
72.Hertze, J, Minthon, L, Zetterberg, H, Vanmechelen, E, Blennow, K, Hansson, O. Evaluation of CSF biomarkers as predictors of Alzheimer's disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis. 2010; 21(4): 11191128.CrossRefGoogle ScholarPubMed
73.Humpel, C. Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol. 2011; 29(1): 2632.CrossRefGoogle ScholarPubMed
74.Mollenhauer, B, Bibl, M, Trenkwalder, C, etal. Follow-up investigations in cerebrospinal fluid of patients with dementia with Lewy bodies and Alzheimer's disease. J Neural Transm. 2005; 112(7): 933948.CrossRefGoogle ScholarPubMed
75.Arai, H, Morikawa, Y, Higuchi, M, etal. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun. 1997; 236(2): 262264.CrossRefGoogle ScholarPubMed
76.Hesse, C, Rosengren, L, Andreasen, N, etal. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001; 297(3): 187190.CrossRefGoogle Scholar
77.Andreasen, N, Vanmechelen, E, Van d, V, etal. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer's disease: a community based follow up study. J Neurol Neurosurg Psychiatry. 1998; 64(3): 298305.CrossRefGoogle ScholarPubMed
78.Parnetti, L, Lanari, A, Amici, S, etal. CSF phosphorylated tau is a possible marker for discriminating Alzheimer's disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol Sci. 2001; 22(1): 7778.CrossRefGoogle ScholarPubMed
79.Buerger, K, Zinkowski, R, Teipel, SJ, etal. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol. 2002; 59(8): 12671272.CrossRefGoogle ScholarPubMed
80.Buerger, K, Zinkowski, R, Teipel, SJ, etal. Differentiation of geriatric major depression from Alzheimer's disease with CSF tau protein phosphorylated at threonine 231. Am J Psychiatry. 2003; 160(2): 376379.CrossRefGoogle ScholarPubMed
81.Buerger, K, Ewers, M, Pirttila, T, etal. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain. 2006; 129(Pt 11): 30353041.CrossRefGoogle ScholarPubMed
82.Hampel, H, Buerger, K, Zinkowski, R, etal. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry. 2004; 61(1): 95102.CrossRefGoogle ScholarPubMed Leon, MJ, DeSanti, S, Zinkowski, R, etal. Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging. 2006; 27(3): 394401.CrossRefGoogle Scholar
84.Strozyk, D, Blennow, K, White, LR, Launer, LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003; 60(4): 652656.CrossRefGoogle Scholar
85.Andreasen, N, Minthon, L, Vanmechelen, E, etal. Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer's disease in patients with mild cognitive impairment. Neurosci Lett. 1999; 273(1): 58.CrossRefGoogle ScholarPubMed
86.Hansson, O, Zetterberg, H, Buchhave, P, etal. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006; 5(3): 228234.CrossRefGoogle ScholarPubMed
87.Okonkwo, OC, Mielke, MM, Griffith, HR, etal. Cerebrospinal fluid profiles and prospective course and outcome in patients with amnestic mild cognitive impairment. Arch Neurol. 2011; 68(1): 113119.CrossRefGoogle ScholarPubMed
88.Tapiola, T, Pirttila, T, Mikkonen, M, etal. Three-year follow-up of cerebrospinal fluid tau, beta-amyloid 42 and 40 concentrations in Alzheimer's disease. Neurosci Lett. 2000; 280(2): 119122.CrossRefGoogle ScholarPubMed
89.Mollenhauer, B, Cepek, L, Bibl, M, etal. Tau protein, Abeta42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2005; 19(2–3): 164170.CrossRefGoogle ScholarPubMed
90.Andreasen, N, Minthon, L, Davidsson, P, etal. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001; 58(3): 373379.CrossRefGoogle ScholarPubMed
91.Kapaki, E, Paraskevas, GP, Papageorgiou, SG, etal. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2008; 22(1): 4753.CrossRefGoogle ScholarPubMed
92.Clifford, DB, Fagan, AM, Holtzman, DM, etal. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009; 73(23): 19821987.CrossRefGoogle ScholarPubMed
93.Fagan, AM, Mintun, MA, Mach, RH, etal. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006; 59(3): 512519.CrossRefGoogle ScholarPubMed
94.Pratico, D. F(2)-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo. Atherosclerosis. 1999; 147(1): 110.CrossRefGoogle ScholarPubMed
95.Montine, TJ, Markesbery, WR, Zackert, W, etal. The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer's disease patients. Am J Pathol. 1999; 155(3): 863868.CrossRefGoogle ScholarPubMed
96.Pratico, D, Clark, CM, Liun, F, etal. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol. 2002; 59(6): 972976.CrossRefGoogle ScholarPubMed
97.Montine, TJ, Kaye, JA, Montine, KS, etal. Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med. 2001; 125(4): 510512.Google ScholarPubMed
98.Grossman, M, Farmer, J, Leight, S, etal. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease. Ann Neurol. 2005; 57(5): 721729.CrossRefGoogle ScholarPubMed
99.Yao, Y, Zhukareva, V, Sung, S, etal. Enhanced brain levels of 8, 12-iso-iPF2alpha-VI differentiate AD from frontotemporal dementia. Neurology. 2003; 61(4): 475478.CrossRefGoogle ScholarPubMed
100.Johansson, P, Mattsson, N, Hansson, O, etal. Cerebrospinal fluid biomarkers for Alzheimer's disease: diagnostic performance in a homogeneous mono-center population. J Alzheimers Dis. 2011; 24(3): 537546.CrossRefGoogle Scholar
101.Maddalena, A, Papassotiropoulos, A, Muller-Tillmanns, B, etal. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide42. Arch Neurol. 2003; 60(9): 12021206.CrossRefGoogle ScholarPubMed
102.Forlenza, OV, Diniz, BS, Gattaz, WF. Diagnosis and biomarkers of predementia in Alzheimer's disease. BMC Med. 2010; 8: 89.CrossRefGoogle ScholarPubMed
103.Li, G, Sokal, I, Quinn, JF, etal. CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology. 2007; 69(7): 631639.CrossRefGoogle ScholarPubMed
104.Atiya, M, Hyman, BT, Albert, MS, Killiany, R. Structural magnetic resonance imaging in established and prodromal Alzheimer disease: a review. Alzheimer Dis Assoc Disord. 2003; 17(3): 177195.CrossRefGoogle ScholarPubMed
105.Rusinek, H, De, SS, Frid, D, etal. Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology. 2003; 229(3): 691696.CrossRefGoogle ScholarPubMed
106.Fox, NC, Warrington, EK, Rossor, MN. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer's disease. Lancet. 1999; 353(9170): 2125.CrossRefGoogle ScholarPubMed
107.Capizzano, AA, Acion, L, Bekinschtein, T, etal. White matter hyperintensities are significantly associated with cortical atrophy in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004; 75(6): 822827.CrossRefGoogle ScholarPubMed
108. Fennema-Notestine C, Archibald SL, Gamst AC, et al. Regional distribution of white matter changes in Alzheimer's disease. 9th International Conference on Alzheimer's Disease and Related Disorders; July 17, 2004; Philadelphia, PA.Google Scholar
109.Bonte, FJ, Harris, TS, Roney, CA, Hynan, LS. Differential diagnosis between Alzheimer's and frontotemporal disease by the posterior cingulate sign. J Nucl Med. 2004; 45(5): 771774.Google ScholarPubMed
110.Du, AT, Schuff, N, Amend, D, etal. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2001; 71(4): 441447.CrossRefGoogle ScholarPubMed
111.Kovacevic, S, Rafii, MS, Brewer, JB. High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Dis Assoc Disord. 2009; 23(2): 139145.CrossRefGoogle ScholarPubMed
112.Duara, R, Loewenstein, DA, Potter, E, etal. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 2008; 71(24): 19861992.CrossRefGoogle Scholar
113.DeCarli, C, Frisoni, GB, Clark, CM, etal. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol. 2007; 64(1): 108115.CrossRefGoogle Scholar
114.Whitwell, JL, Przybelski, SA, Weigand, SD, etal. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain. 2007; 130(Pt 7): 17771786.CrossRefGoogle ScholarPubMed
115.Nagy, Z, Hindley, NJ, Braak, H, etal. Relationship between clinical and radiological diagnostic criteria for Alzheimer's disease and the extent of neuropathology as reflected by “stages”: a prospective study. Dement Geriatr Cogn Disord. 1999; 10(2): 109114.CrossRefGoogle ScholarPubMed
116.Du, AT, Schuff, N, Zhu, XP, etal. Atrophy rates of entorhinal cortex in AD and normal aging. Neurology. 2003; 60(3): 481486.CrossRefGoogle ScholarPubMed
117.Ferreira, LK, Diniz, BS, Forlenza, OV, Busatto, GF, Zanetti, MV. Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011; 32(10): 17331741.CrossRefGoogle ScholarPubMed
118.Hanggi, J, Streffer, J, Jancke, L, Hock, C. Volumes of lateral temporal and parietal structures distinguish between healthy aging, mild cognitive impairment, and Alzheimer's disease. J Alzheimers Dis. 2011; 26(4): 719734.CrossRefGoogle ScholarPubMed
119.Thompson, PM, Hayashi, KM, Dutton, RA, etal. Tracking Alzheimer's disease. Ann N Y Acad Sci. 2007; 1097: 183214.CrossRefGoogle ScholarPubMed
120.Colliot, O, Chetelat, G, Chupin, M, etal. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology. 2008; 248(1): 194201.CrossRefGoogle ScholarPubMed
121.Chetelat, G, Landeau, B, Eustache, F, etal. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage. 2005; 27(4): 934946.CrossRefGoogle ScholarPubMed
122.Desikan, RS, Sabuncu, MR, Schmansky, NJ, etal. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS One. 2010; 5(9): e12853.CrossRefGoogle ScholarPubMed
123.Thurfjell, L, Lotjonen, J, Lundqvist, R, etal. Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener Dis. 2012; 10(1–4): 246249.CrossRefGoogle ScholarPubMed
124.McKinnon, MC, Yucel, K, Nazarov, A, MacQueen, GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci. 2009; 34(1): 4154.Google ScholarPubMed
125.Bremner, JD. The relationship between cognitive and brain changes in posttraumatic stress disorder. Ann N Y Acad Sci. 2006; 1071: 8086.CrossRefGoogle ScholarPubMed
126.Hedges, DW, Woon, FL. Alcohol use and hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Biol Psychol. 2010; 84(2): 163168.CrossRefGoogle ScholarPubMed
127.Woon, FL, Sood, S, Hedges, DW. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(7): 11811188.CrossRefGoogle ScholarPubMed
128.Agartz, I, Momenan, R, Rawlings, RR, Kerich, MJ, Hommer, DW. Hippocampal volume in patients with alcohol dependence. Arch Gen Psychiatry. 1999; 56(4): 356363.CrossRefGoogle ScholarPubMed
129.Klunk, WE, Mathis, CA, Price, JC, Lopresti, BJ, DeKosky, ST. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006; 129(Pt 11): 28052807.CrossRefGoogle ScholarPubMed
130.Klunk, WE, Engler, H, Nordberg, A, etal. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004; 55(3): 306319.CrossRefGoogle ScholarPubMed
131.Pike, KE, Savage, G, Villemagne, VL, etal. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain. 2007; 130(Pt 11): 28372844.CrossRefGoogle ScholarPubMed
132.Cairns, NJ, Ikonomovic, MD, Benzinger, T, etal. Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol. 2009; 66(12): 15571562.CrossRefGoogle Scholar
133.Mintun, MA, LaRossa, GN, Sheline, YI, etal. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006; 67(3): 446452.CrossRefGoogle Scholar
134.Rowe, CC, Ng, S, Ackermann, U, etal. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007; 68(20): 17181725.CrossRefGoogle ScholarPubMed
135.Villemagne, VL, Chetelat, G, Pike, K, Rowe, CC. Comparison of biomarkers for the prediction of cognitive decline. Alzheimers Dement. 2010; 6(4): S139.CrossRefGoogle Scholar
136.Lockhart, A, Lamb, JR, Osredkar, T, etal. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain. 2007; 130(Pt 10): 26072615.CrossRefGoogle ScholarPubMed
137.Mok, V, Leung, EY, Chu, W, etal. Pittsburgh compound B binding in poststroke dementia. J Neurol Sci. 2010; 290(1–2): 135137.CrossRefGoogle ScholarPubMed
138.Gomperts, SN, Rentz, DM, Moran, E, etal. Imaging amyloid deposition in Lewy body diseases. Neurology. 2008; 71(12): 903910.CrossRefGoogle ScholarPubMed
139.Masters, CL, Villemagne, V, McLean, C. 11C-PiB-postmortem: a plaque load correlation. Alzheimers Dement. 2010; 6(4): S234.CrossRefGoogle Scholar
140.Villemagne, VL, Rowe, CC. Amyloid imaging. Int Psychogeriatr. 2011; 23 Suppl 2: S41S49.CrossRefGoogle ScholarPubMed
141.Okello, A, Koivunen, J, Edison, P, etal. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009; 73(10): 754760.CrossRefGoogle ScholarPubMed
142.Mintun, MA, Vlasenko, A, Sheline, YI, Morris, JC. Longitudinal PIB PET imaging of the appearance and accumulation of beta-amyloid in cognitively normal middle and late life adults. Alzheimers Dement. 2010; 6(4): S2.CrossRefGoogle Scholar
143.Rowe, CC. Standardization of amyloid imaging. Alzheimers Dement. 2010; 6(4): S87.CrossRefGoogle Scholar
144.Chetelat, G, Villemagne, V, Bourgeat, P, etal. Relationship between atrophy and beta-amyloid deposition in normal elderly, mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2010; 6(4): S45.CrossRefGoogle Scholar
145. Leung K. 2-(1-{6-[(2-[18F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2011. 2005 Jul 25 [updated 2011 Jun 26].Google Scholar
146.Small, GW, Kepe, V, Ercoli, LM, etal. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006; 355(25): 26522663.CrossRefGoogle ScholarPubMed
147.Agdeppa, ED, Kepe, V, Liu, J, etal. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci. 2001; 21(24): RC189.CrossRefGoogle ScholarPubMed
148.Shoghi-Jadid, K, Small, GW, Agdeppa, ED, etal. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002; 10(1): 2435.CrossRefGoogle ScholarPubMed
149.Ossenkoppele, R, Tolboom, N, Foster-Dingley, J, etal. First ever longitudinal C-11-PIB and F18-FDDNP PET studies in patients with Alzheimer's disease or mild cognitive impairment and healthy controls. Alzheimers Dement. 2010; 6(4): S72.CrossRefGoogle Scholar
150.Villemagne, VL, Mulligan, RS, Pejoska, S, etal. Comparison of (11)C-PiB and (18)F-florbetaben for Abeta imaging in ageing and Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2012; 39(6): 983989.CrossRefGoogle ScholarPubMed
151.Villemagne, VL, Chetelat, G, Pike, K, etal. Comparison of biomarkers for the prediction of cognitive decline. Alzheimers Dement. 2010; 6(4): S139.CrossRefGoogle Scholar
152.Rowe, CC, Ackerman, U, Browne, W, etal. Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008; 7(2): 129135.CrossRefGoogle ScholarPubMed
153.Sabri, O, Gertz, HJ, Dresel, S, etal. Florbetaben for beta-amyloid brain PET in Alzheimer's disease: results of a multicenter phase 2 trial. Alzheimers Dement. 2010; 6(4): S70.CrossRefGoogle Scholar
154.Ong, K, Villemagne, V, Langdon, N, etal. Assessment of a deposition in mild cognitive impairment with 18F-florbetaben. Alzheimers Dement. 2010; 6(4): S26.CrossRefGoogle Scholar
155.Braak, H, Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995; 16(3): 271278.CrossRefGoogle ScholarPubMed
156.Seibyl, J, Barret, O, Zubal, G. Objective SUVR determination using MRI segmentation maps in florbetaben beta-amyloid brain PET improves discrimination of Alzhemer's and controls. Alzheimers Dement. 2010; 6(4): S50.CrossRefGoogle Scholar
157.Villemagne, V, Ong, K, Langdon, N, etal. 18F-Florbetaben-pet imaging in the differential diagnosis of dementia. Alzheimers Dement. 2010; 6(4): S70S71.CrossRefGoogle Scholar
158.Barthel, H, Gertz, HJ, Dresel, S, etal. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011; 10(5): 424435.CrossRefGoogle ScholarPubMed
159.Kukull, WA, Larson, EB, Reifler, BV, etal. The validity of 3 clinical diagnostic criteria for Alzheimer's disease. Neurology. 1990; 40(9): 13641369.CrossRefGoogle ScholarPubMed
160.Barthel, H, Luthardt, J, Becker, G, etal. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls. Eur J Nucl Med Mol Imaging. 2011; 38(9): 17021714.CrossRefGoogle Scholar
161. Rowe, CC. Clinical use of amyloid neuroimaging. Paper presented at: Society of Nuclear Medicine Annual Meeting; June 9, 2012; Miami Beach, FL.Google Scholar
162.Barthel, H, Sabri, O. Florbetaben to trace amyloid-β in the Alzheimer brain by means of PET. J. Alzheimers Dis. 2011; 26(S3): 117121.CrossRefGoogle ScholarPubMed
163. Sabri O. Multicentre phase 3 trial on florbetaben for beta-amyloid brain PET in Alzheimer disease. Paper presented at: Society of Nuclear Medicine Annual Meeting; June 10, 2012; Miami Beach, FL.Google Scholar
164.Buckley, CJ, Thurfjell, L, Farrar, G, etal. Visual read performance and related metrics of the amyloid imaging agent F18-flutemetamol: results from the phase II multicenter trial. Alzheimers Dement. 2010; 6(4): S49.CrossRefGoogle Scholar
165.Jureus, A, Swahn, BM, Sandell, J, etal. Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand. J Neurochem. 2010; 114(3): 784794.CrossRefGoogle ScholarPubMed
166.Cselenyi, Z, Jonhagen, ME, Forsberg, A, etal. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med. 2012; 53(3): 415424.CrossRefGoogle ScholarPubMed
167.Clark, CM, Schneider, JA, Mintun, MA, etal. Phase III trial results for the amyoid PET imaging agent florbetapir F 18 (18F-AV-45): imaging to histopathologic correlations in an end-of-life human subject study. Alzheimers Dement. 2010; 6(4): S71.CrossRefGoogle Scholar
168.Wong, DF, Rosenberg, PB, Zhou, Y, etal. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010; 51(6): 913920.CrossRefGoogle Scholar
169.Joshi, AD, Pontecorvo, MJ, Clark, CM, etal. Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer's disease and cognitively normal subjects. J Nucl Med. 2012; 53(3): 378384.CrossRefGoogle ScholarPubMed
170.Newberg, AB, Arnold, SE, Wintering, N, Rovner, BW, Alavi, A. Initial clinical comparison of 18F-florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls. J Nucl Med. 2012; 53(6): 902907.CrossRefGoogle ScholarPubMed
171.Sperling, RA, Doraiswamy, PM, Johnson, K, etal. Florbetapir F 18 (18F-AV-45) PET amyloid imaging predicts progression of cognitive impairment: a longitudinal clinical follow up study. Alzheimers Dement. 2010; 6(4): S71.CrossRefGoogle Scholar
172.Clark, CM, Schneider, JA, Bedell, BJ, etal. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011; 305(3): 275283.CrossRefGoogle ScholarPubMed
173.Camus, V, Payoux, P, Barre, L, etal. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012; 39(4): 621631.CrossRefGoogle Scholar
174.Jobst, KA, Barnetson, LP, Shepstone, BJ. Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and Apo E4 in medial temporal lobe dementias. Oxford Project to Investigate Memory and Aging. Int Psychogeriatr. 1998; 10(3): 271302.CrossRefGoogle ScholarPubMed
175.Herholz, K, Carter, SF, Jones, M. Positron emission tomography imaging in dementia. Br J Radiol. 2007; 80(Spec No. 2): S160S167.CrossRefGoogle ScholarPubMed
176.McMurtray, AM, Licht, E, Yeo, T, etal. Positron emission tomography facilitates diagnosis of early-onset Alzheimer's disease. Eur Neurol. 2008; 59(1–2): 3137.CrossRefGoogle ScholarPubMed Leon, MJ, Convit, A, Wolf, OT, etal. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A. 2001; 98(19): 1096610971.CrossRefGoogle Scholar
178.Mosconi, L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease: FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005; 32(4): 486510.CrossRefGoogle ScholarPubMed
179.Mosconi, L, Tsui, WH, Herholz, K, etal. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008; 49(3): 390398.CrossRefGoogle ScholarPubMed
180.Jagust, W. Molecular neuroimaging in Alzheimer's disease. NeuroRx. 2004; 1(2): 206212.CrossRefGoogle ScholarPubMed
181.Minoshima, S, Giordani, B, Berent, S, etal. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997; 42(1): 8594.CrossRefGoogle ScholarPubMed
182.Minoshima, S, Foster, NL, Kuhl, DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994; 344(8926): 895.CrossRefGoogle ScholarPubMed
183.Patwardhan, MB, McCrory, DC, Matchar, DB, Samsa, GP, Rutschmann, OT. Alzheimer disease: operating characteristics of PET—a meta-analysis. Radiology. 2004; 231(1): 7380.CrossRefGoogle Scholar
184.Panegyres, PK, Rogers, JM, McCarthy, M, Campbell, A, Wu, JS. Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol. 2009; 9: 4150.CrossRefGoogle ScholarPubMed
185.Minoshima, S, Foster, NL, Sima, AA, etal. Alzheimer's disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 2001; 50(3): 358365.CrossRefGoogle ScholarPubMed
186.Mosconi, L, De, SS, Li, Y, etal. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET. Eur J Nucl Med Mol Imaging. 2006; 33(2): 210221.CrossRefGoogle ScholarPubMed
187.Dobert, N, Pantel, J, Frolich, L, etal. Diagnostic value of FDG-PET and HMPAO-SPET in patients with mild dementia and mild cognitive impairment: metabolic index and perfusion index. Dement Geriatr Cogn Disord. 2005; 20(2–3): 6370.CrossRefGoogle ScholarPubMed
188.Drzezga, A, Lautenschlager, N, Siebner, H, etal. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003; 30(8): 11041113.Google ScholarPubMed
189.Pagani, M, Dessi, B, Morbelli, S, etal. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010; 7(4): 287294.CrossRefGoogle ScholarPubMed
190.Yuan, Y, Gu, ZX, Wei, WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009; 30(2): 404410.CrossRefGoogle ScholarPubMed
191.Devous, MD. SPECT functional brain imaging. In: Toga AW, Mazziotta JC, editors. Brain Mapping: The Methods, 2nd ed. London: Academic Press; 2002: 513536.CrossRefGoogle Scholar
192.Devous, MD. SPECT functional brain imaging: instrumentation, radiopharmaceuticals and technical factors. In: Van Heertum RL, Tikofsky RS, Ichise M, editors. Functional Cerebral SPECT and PET Imaging, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2010: 322.Google Scholar
193.Darcourt, J, Mena, I, Cauvin, J-C, Miller, BL. Absolute calibration of HMPAO SPECT using (133)Xe rCBF values. Alasbimn J. 1999; 2(5). Scholar
194.Payne, JK, Trivedi, MH, Devous, MD Sr. Comparison of technetium-99m-HMPAO and xenon-133 measurements of regional cerebral blood flow by SPECT. J Nucl Med. 1996; 37(10): 17351740.Google ScholarPubMed
195.Pimlott, SL, Ebmeier, KP. SPECT imaging in dementia. Br J Radiol. 2007; 80(Spec No 2): S153S159.CrossRefGoogle ScholarPubMed
196.Matsuda, H. Role of neuroimaging in Alzheimer's disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007; 48(8): 12891300.CrossRefGoogle ScholarPubMed
197.Cherry, S, Phelps, ME. Positron emission tomography: methods and instrumentation. In: Sandler M, Coleman RE, Patton J, Wacker F J T, Gottschalk A, editors. Diagnostic Nuclear Medicine, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2003: 6183.Google Scholar
198. Harkness LJ, Boston AJ, Boston HC. Prospectus: development of a compton camera for medical imaging. In: Dosse O, Schegel WC, editors. IFMBE Proceedings 2009: World Congress on Medical Physics and Biomedical Engineering: 2009 Sept 7–12. Munich: Springer; 2012: 102–105.Google Scholar
199.Ducassou, D, Brendel, A, Lacroix, F, Brothier, JP. Clinical value of single photon emission computerized tomography in encephalic exploration. Int J Nucl Med Biol. 1980; 7(1): 2531.CrossRefGoogle ScholarPubMed
200.Lassen, NA. Regional cerebral blod flow studied by xenon-133: intra-arterial injection studies and inhalation studies using emission tomography. Bull Schweiz Akad Med Wiss. 1980; 36(1–3): 93100.Google ScholarPubMed
201.Hill, TC, Costello, P, Gramm, HF, Lovett, R, McNeill, BJ, Treves, S. Early clinical experience with a radionuclide emission computed tomographic brain imaging system. Radiology. 1978; 128(3): 803806.CrossRefGoogle ScholarPubMed
202.Bonte, FJ, Ross, ED, Chehabi, HH, Devous, MD Sr. SPECT study of regional cerebral blood flow in Alzheimer disease. J Comput Assist Tomogr. 1986; 10(4): 579583.CrossRefGoogle ScholarPubMed
203.Battistin, L, Pizzolato, G, Dam, M, etal. Regional cerebral blood flow study with 99mTc-hexamethyl-propyleneamine oxime single photon emission computed tomography in Alzheimer's and multi-infarct dementia. Eur Neurol. 1990; 30(5): 296301.CrossRefGoogle ScholarPubMed
204.Knapp, WH, Dannenberg, C, Marschall, B, etal. Changes in local cerebral blood flow by neuroactivation and vasoactivation in patients with impaired cognitive function. Eur J Nucl Med. 1996; 23(8): 878888.CrossRefGoogle ScholarPubMed
205.Mattman, A, Feldman, H, Forster, B, etal. Regional HmPAO SPECT and CT measurements in the diagnosis of Alzheimer's disease. Can J Neurol Sci. 1997; 24(1): 2228.CrossRefGoogle Scholar
206.Varma, AR, Adams, W, Lloyd, JJ, etal. Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on SPECT in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia. Acta Neurol Scand. 2002; 105(4): 261269.CrossRefGoogle ScholarPubMed
207.Hellman, RS, Tikofsky, RS, Van, HR, etal. A multi-institutional study of interobserver agreement in the evaluation of dementia with rCBF/SPET technetium-99m exametazime (HMPAO). Eur J Nucl Med. 1994; 21(4): 306313.CrossRefGoogle Scholar
208.Talbot, PR, Lloyd, JJ, Snowden, JS, Neary, D, Testa, HJ. A clinical role for 99mTc-HMPAO-SPECT in the investigation of dementia? J Neurol Neurosurg Psychiatry. 1998; 64(3): 306313.CrossRefGoogle Scholar
209.Dougall, NJ, Bruggink, S, Ebmeier, KP. Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia. Am J Geriatr Psychiatry. 2004; 12(6): 554570.CrossRefGoogle ScholarPubMed
210.Van Heertum, RL. Dementia: diagnosis of dementia. In: Van Heertum RL, Tikofsky RS, Ichise M, editors. Functional Cerebral SPECT and PET Imaging, 4th ed. Philadephia: Lippincott Williams & Wilkins; 2010: 8195.Google Scholar
211.Bloudek, LM, Spackman, DE, Blankenburg, M, Sullivan, SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease. J Alzheimers Dis. 2011; 26(4): 627645.CrossRefGoogle ScholarPubMed
212.Bonte, FJ, Harris, TS, Hynan, LS, Bigio, EH, White, CL III. Tc-99m HMPAO SPECT in the differential diagnosis of the dementias with histopathologic confirmation. Clin Nucl Med. 2006; 31(7): 376378.CrossRefGoogle ScholarPubMed
213.Hanyu, H, Abe, S, Arai, H, etal. Diagnostic accuracy of single photon emission computed tomography in Alzheimer's disease. Gerontology. 1993; 39(5): 260266.CrossRefGoogle ScholarPubMed
214.Perani, D, Di Piero, V, Vallar, G, etal. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease. J Nucl Med. 1988; 29(9): 15071514.Google ScholarPubMed
215.Leys, D, Steinling, M, Petit, H, etal. [Alzheimer's disease: study by single photon emission tomography (Hm PAO Tc99m)]. Rev Neurol (Paris). 1989; 145(6–7): 443450.Google Scholar
216.Hurwitz, TA, Ammann, W, Chu, D, etal. Single photon emission computed tomography using 99mTc-HM-PAO in the routine evaluation of Alzheimer's disease. Can J Neurol Sci. 1991; 18(1): 5962.CrossRefGoogle ScholarPubMed
217.O'Brien, JT, Eagger, S, Syed, GM, Sahakian, BJ, Levy, R. A study of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1992; 55(12): 11821187.CrossRefGoogle ScholarPubMed
218.Claus, JJ, van, HF, Breteler, MM, etal. Assessment of cerebral perfusion with single-photon emission tomography in normal subjects and in patients with Alzheimer's disease: effects of region of interest selection. Eur J Nucl Med. 1994; 21(10): 10441051.CrossRefGoogle ScholarPubMed
219.Sloan, EP, Fenton, GW, Kennedy, NS, MacLennan, JM. Electroencephalography and single photon emission computed tomography in dementia: a comparative study. Psychol Med. 1995; 25(3): 631638.CrossRefGoogle ScholarPubMed
220.O'Mahony, D, Coffey, J, Murphy, J, etal. The discriminant value of semiquantitative SPECT data in mild Alzheimer's disease. J Nucl Med. 1994; 35(9): 14501455.Google ScholarPubMed
221.O'Brien, JT, Ames, D, Desmond, P, etal. Combined magnetic resonance imaging and single-photon emission tomography scanning in the discrimination of Alzheimer's disease from age-matched controls. Int Psychogeriatr. 2001; 13(2): 149161.CrossRefGoogle ScholarPubMed
222.Honda, N, Machida, K, Hosono, M, etal. Interobserver variation in diagnosis of dementia by brain perfusion SPECT. Radiat Med. 2002; 20(6): 281289.Google ScholarPubMed
223.Soonawala, D, Amin, T, Ebmeier, KP, etal. Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer's disease: normalizing to cerebellar tracer uptake. Neuroimage. 2002; 17(3): 11931202.CrossRefGoogle Scholar
224.Johnson, KA, Kijewski, MF, Becker, JA, etal. Quantitative brain SPECT in Alzheimer's disease and normal aging. J Nucl Med. 1993; 34(11): 20442048.Google ScholarPubMed
225.Waldemar, G, Bruhn, P, Kristensen, M, etal. Heterogeneity of neocortical cerebral blood flow deficits in dementia of the Alzheimer type: a [99mTc]-d,l-HMPAO SPECT study. J Neurol Neurosurg Psychiatry. 1994; 57(3): 285295.CrossRefGoogle Scholar
226.Karbe, H, Kertesz, A, Davis, J, etal. Quantification of functional deficit in Alzheimer's disease using a computer-assisted mapping program for 99mTc-HMPAO SPECT. Neuroradiology. 1994; 36(1): 16.CrossRefGoogle ScholarPubMed
227.Messa, C, Perani, D, Lucignani, G, etal. High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer's disease: comparison with fluorine-18-FDG PET. J Nucl Med. 1994; 35(2): 210216.Google ScholarPubMed
228.Ichise, M, Crisp, S, Ganguli, N, Tsai, S, Gray, BG. A method of two-dimensional mapping of cortical perfusion by cylindrical transformation of HMPAO SPET data. Nucl Med Commun. 1995; 16(5): 386394.CrossRefGoogle ScholarPubMed
229.Hashikawa, K, Matsumoto, M, Moriwaki, H, etal. Three-dimensional display of surface cortical perfusion by SPECT: application in assessing Alzheimer's disease. J Nucl Med. 1995; 36(4): 690696.Google ScholarPubMed
230.deFigueiredo, RJ, Shankle, WR, Maccato, A, etal. Neural-network-based classification of cognitively normal, demented, Alzheimer disease and vascular dementia from single photon emission with computed tomography image data from brain. Proc Natl Acad Sci U S A. 1995; 92(12): 55305534.CrossRefGoogle ScholarPubMed
231.van Dyck, CH, Lin, CH, Smith, EO, etal. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer's disease. J Nucl Med. 1996; 37(11): 17491755.Google ScholarPubMed
232.Bartenstein, P, Minoshima, S, Hirsch, C, etal. Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT. J Nucl Med. 1997; 38(7): 10951101.Google ScholarPubMed
233.Johnson, KA, Jones, K, Holman, BL, etal. Preclinical prediction of Alzheimer's disease using SPECT. Neurology. 1998; 50(6): 15631571.CrossRefGoogle ScholarPubMed
234.Honda, N, Machida, K, Matsumoto, T, etal. Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer's disease. Ann Nucl Med. 2003; 17(8): 641648.CrossRefGoogle ScholarPubMed
235.Elgh, E, Sundstrom, T, Nasman, B, Ahlstrom, R, Nyberg, L. Memory functions and rCBF (99m)Tc-HMPAO SPET: developing diagnostics in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2002; 29(9): 11401148.CrossRefGoogle ScholarPubMed
236.Kubota, T, Ushijima, Y, Yamada, K, etal. Diagnosis of Alzheimer's disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy? Eur J Nucl Med Mol Imaging. 2005; 32(4): 414421.CrossRefGoogle Scholar
237.Kemp, PM, Hoffmann, SA, Holmes, C, etal. The contribution of statistical parametric mapping in the assessment of precuneal and medial temporal lobe perfusion by 99mTc-HMPAO SPECT in mild Alzheimer's and Lewy body dementia. Nucl Med Commun. 2005; 26(12): 10991106.CrossRefGoogle ScholarPubMed
238.Chaves, R, Ramirez, J, Gorriz, JM, etal. SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting. Neurosci Lett. 2009; 461(3): 293297.CrossRefGoogle ScholarPubMed
239.Pagani, M, Salmaso, D, Rodriguez, G, Nardo, D, Nobili, F. Principal component analysis in mild and moderate Alzheimer's disease—a novel approach to clinical diagnosis. Psychiatry Res. 2009; 173(1): 814.CrossRefGoogle ScholarPubMed
240.Ishii, S, Shishido, F, Miyajima, M, etal. Comparison of Alzheimer's disease with vascular dementia and non-dementia using specific voxel-based Z score maps. Ann Nucl Med. 2009; 23(1): 2531.CrossRefGoogle ScholarPubMed
241.Rusina, R, Kukal, J, Belicek, T, Buncova, M, Matej, R. Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease—a retrospective study. BMC Med Imaging. 2010; 10: 20.CrossRefGoogle ScholarPubMed
242.Starkstein, SE, Sabe, L, Vazquez, S, etal. Neuropsychological, psychiatric, and cerebral blood flow findings in vascular dementia and Alzheimer's disease. Stroke. 1996; 27(3): 408414.CrossRefGoogle ScholarPubMed
243.Yoshikawa, T, Murase, K, Oku, N, etal. Heterogeneity of cerebral blood flow in Alzheimer disease and vascular dementia. AJNR Am J Neuroradiol. 2003; 24(7): 13411347.Google ScholarPubMed
244.Jagust, WJ, Budinger, TF, Reed, BR. The diagnosis of dementia with single photon emission computed tomography. Arch Neurol. 1987; 44(3): 258262.CrossRefGoogle Scholar
245.Yoshikawa, T, Murase, K, Oku, N, etal. Statistical image analysis of cerebral blood flow in vascular dementia with small-vessel disease. J Nucl Med. 2003; 44(4): 505511.Google ScholarPubMed
246.Butler, RE, Costa, DC, Greco, A, etal. Differentiation between Alzheimer's disease and multi-infarct dementia: SPECT vs. MR imaging. Int J Geriatr Psychiatry. 1995; 10: 121128.CrossRefGoogle Scholar
247.Uchida, Y, Minoshima, S, Okada, S, Kawata, T, Ito, H. Diagnosis of dementia using perfusion SPECT imaging at the patient's initial visit to a cognitive disorder clinic. Clin Nucl Med. 2006; 31(12): 764773.CrossRefGoogle ScholarPubMed
248.Pavics, L, Grunwald, F, Reichmann, K, etal. Regional cerebral blood flow single-photon emission tomography with 99mTc-HMPAO and the acetazolamide test in the evaluation of vascular and Alzheimer's dementia. Eur J Nucl Med. 1999; 26(3): 239245.Google ScholarPubMed
249.Bergman, H, Chertkow, H, Wolfson, C, etal. HM-PAO (CERETEC) SPECT brain scanning in the diagnosis of Alzheimer's disease. J Am Geriatr Soc. 1997; 45(1): 1520.CrossRefGoogle Scholar
250.Mielke, R, Pietrzyk, U, Jacobs, A, etal. HMPAO SPET and FDG PET in Alzheimer's disease and vascular dementia: comparison of perfusion and metabolic pattern. Eur J Nucl Med. 1994; 21(10): 10521060.CrossRefGoogle ScholarPubMed
251.Houston, AS, Kemp, PM, Macleod, MA. A method for assessing the significance of abnormalities in HMPO brain SPECT images. J Nucl Med. 1994; 35(2): 239244.Google ScholarPubMed
252.Launes, J, Sulkava, R, Erkinjuntti, T, etal. 99Tcm-HMPAO SPECT in suspected dementia. Nucl Med Commun. 1991; 12(9): 757765.CrossRefGoogle ScholarPubMed
253.Kato, H, Yoshikawa, T, Oku, N, etal. Statistical parametric analysis of cerebral blood flow in vascular dementia with small-vessel disease using Tc-HMPAO SPECT. Cerebrovasc Dis. 2008; 26(5): 556562.CrossRefGoogle ScholarPubMed
254.Shim, YS, Yang, DW, Kim, BS, Shon, YM, Chung, YA. Comparison of regional cerebral blood flow in two subsets of subcortical ischemic vascular dementia: statistical parametric mapping analysis of SPECT. J Neurol Sci. 2006; 250(1–2): 8591.CrossRefGoogle ScholarPubMed
255.Vorstrup, S, Henriksen, L, Paulson, OB. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest. 1984; 74(5): 16341639.CrossRefGoogle ScholarPubMed
256.Takasawa, M, Murase, K, Oku, N, etal. Assessment of acetazolamide reactivity in cerebral blood flow using spectral analysis and technetium-99m hexamethylpropylene amine oxime. J Cereb Blood Flow Metab. 2002; 22(8): 10041009.CrossRefGoogle ScholarPubMed
257.Vorstrup, S. Tomographic cerebral blood flow measurements in patients with ischemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazolamide test. Acta Neurol Scand Suppl. 1988; 114: 148.Google ScholarPubMed
258.Devous, MD Sr. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med Mol Imaging. 2002; 29(12): 16851696.CrossRefGoogle ScholarPubMed
259.Bonte, FJ, Tintner, R, Weiner, MF, Bigio, EH, White, CL III. Brain blood flow in the dementias: SPECT with histopathologic correlation. Radiology. 1993; 186(2): 361365.CrossRefGoogle ScholarPubMed
260.Matsuda, H, Mizumura, S, Nagao, T, etal. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2007; 28(4): 731736.Google ScholarPubMed
261.Neary, D, Snowden, JS, Shields, RA, etal. Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry. 1987; 50(9): 11011109.CrossRefGoogle Scholar
262.Testa, HJ, Snowden, JS, Neary, D, etal. The use of [99mTc]-HM-PAO in the diagnosis of primary degenerative dementia. J Cereb Blood Flow Metab. 1988; 8(6): S123S126.CrossRefGoogle Scholar
263.McNeill, R, Sare, GM, Manoharan, M, etal. Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2007; 78(4): 350355.CrossRefGoogle ScholarPubMed
264.Charpentier, P, Lavenu, I, Defebvre, L, etal. Alzheimer's disease and frontotemporal dementia are differentiated by discriminant analysis applied to (99m)Tc HmPAO SPECT data. J Neurol Neurosurg Psychiatry. 2000; 69(5): 661663.CrossRefGoogle ScholarPubMed
265.Boutoleau-Bretonniere, C, Lebouvier, T, Delaroche, O, etal. Value of neuropsychological testing, imaging, and CSF biomarkers for the differential diagnosis and prognosis of clinically ambiguous dementia. J Alzheimers Dis. 2012; 28(2): 323336.CrossRefGoogle ScholarPubMed
266.Horn, JF, Habert, MO, Kas, A, etal. Differential automatic diagnosis between Alzheimer's disease and frontotemporal dementia based on perfusion SPECT images. Artif Intell Med. 2009; 47(2): 147158.CrossRefGoogle ScholarPubMed
267.Shimizu, S, Hanyu, H, Kanetaka, H, etal. Differentiation of dementia with Lewy bodies from Alzheimer's disease using brain SPECT. Dement Geriatr Cogn Disord. 2005; 20(1): 2530.CrossRefGoogle ScholarPubMed
268.Goto, H, Ishii, K, Uemura, T, etal. Differential diagnosis of dementia with Lewy bodies and Alzheimer disease using combined MR imaging and brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2010; 31(4): 720725.CrossRefGoogle ScholarPubMed
269.Johnson, KA, Moran, EK, Becker, JA, etal. Single photon emission computed tomography perfusion differences in mild cognitive impairment. J Neurol Neurosurg Psychiatry. 2007; 78(3): 240247.CrossRefGoogle ScholarPubMed
270.Edman, A, Edenbrandt, L, Freden-Lindqvist, J, Nilsson, M, Wallin, A. Asymmetric cerebral blood flow in patients with mild cognitive impairment: possible relationship to further cognitive deterioration. Dement Geriatr Cogn Dis Extra. 2011; 1(1): 228236.CrossRefGoogle ScholarPubMed
271.Habert, MO, Horn, JF, Sarazin, M, etal. Brain perfusion SPECT with an automated quantitative tool can identify prodromal Alzheimer's disease among patients with mild cognitive impairment. Neurobiol Aging. 2011; 32(1): 1523.CrossRefGoogle ScholarPubMed
272.Encinas, M, De, JR, Marcos, A, etal. Regional cerebral blood flow assessed with 99mTc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2003; 30(11): 14731480.CrossRefGoogle ScholarPubMed
273.Caroli, A, Testa, C, Geroldi, C, etal. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment. J Neurol. 2007; 254(12): 16981707.CrossRefGoogle ScholarPubMed
274.Nobili, F, De, CF, Frisoni, GB, etal. SPECT predictors of cognitive decline and Alzheimer's disease in mild cognitive impairment. J Alzheimers Dis. 2009; 17(4): 761772.CrossRefGoogle ScholarPubMed
275.Kogure, D, Matsuda, H, Ohnishi, T, etal. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med. 2000; 41(7): 11551162.Google ScholarPubMed
276.Huang, C, Wahlund, LO, Svensson, L, Winblad, B, Julin, P. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment. BMC Neurol. 2002; 2: 915.CrossRefGoogle ScholarPubMed
277.Ishiwata, A, Sakayori, O, Minoshima, S, etal. Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand. 2006; 114(2): 9196.CrossRefGoogle ScholarPubMed
278.Borroni, B, Anchisi, D, Paghera, B, etal. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging. 2006; 27(1): 2431.CrossRefGoogle ScholarPubMed
279.Wolfe, N, Reed, BR, Eberling, JL, Jagust, WJ. Temporal lobe perfusion on single photon emission computed tomography predicts the rate of cognitive decline in Alzheimer's disease. Arch Neurol. 1995; 52(3): 257262.CrossRefGoogle ScholarPubMed
280.Desgranges, B, Baron, JC, de la Sayette, V, etal. The neural substrates of memory systems impairment in Alzheimer's disease: a PET study of resting brain glucose utilization. Brain. 1998; 121(4): 611631.CrossRefGoogle ScholarPubMed
281.Hirao, K, Ohnishi, T, Matsuda, H, etal. Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl Med Commun. 2006; 27(2): 151156.CrossRefGoogle ScholarPubMed
282.Mosconi, L, Pupi, A, De Cristofaro, MT, etal. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer's disease. J Nucl Med. 2004; 45(3): 382392.Google ScholarPubMed
283.Matsuda, H. The role of neuroimaging in mild cognitive impairment. Neuropathology. 2007; 27(6): 570577.CrossRefGoogle ScholarPubMed
284.Gomez-Isla, T, Price, JL, McKeel, DW Jr, etal. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci. 1996; 16(14): 44914500.CrossRefGoogle ScholarPubMed
285.Price, JL, Ko, AI, Wade, MJ, etal. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol. 2001; 58(9): 13951402.CrossRefGoogle ScholarPubMed
286.Minoshima, S, Cross, DJ, Foster, NL, Henry, TR, Kuhl, DE. Discordance between traditional pathologic and energy metabolic changes in very early Alzheimer's disease: pathophysiological implications. Ann N Y Acad Sci. 1999; 893: 350352.CrossRefGoogle ScholarPubMed
287.Matsuda, H. The role of neuroimaging in mild cognitive impairment. Neuropathology. 2007; 27(6): 570577.CrossRefGoogle ScholarPubMed
288.Petersen, RC, Stevens, JC, Ganguli, M, etal. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): 11331142.CrossRefGoogle ScholarPubMed
289. Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer's Disease”, The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol Aging. 1998; 19(2): 109–116.Google Scholar
290.Herholz, K. Perfusion SPECT and FDG-PET. Int Psychogeriatr. 2011; 23(Suppl 2): S25S31.CrossRefGoogle ScholarPubMed
291.Weih, M, Degirmenci, U, Kreil, S, etal. Perfusion imaging with SPECT in the era of pathophysiology-based biomarkers for Alzheimer's disease. Int J Alzheimers Dis. 2010; 2010: 109618.Google ScholarPubMed
292.Herholz, K, Schopphoff, H, Schmidt, M, etal. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med. 2002; 43(1): 2126.Google ScholarPubMed
293.Shipley, S, Kluger, B, Filley, C. Accuracy of community-acquired PET scans in the diagnosis of dementia. Paper presented at: American Acemdey of Neurology 64th Annual Meeting; April 23, 2012; New Orleans, LA.Google Scholar
294.Clark, CM, Schneider, JA, Mintun, MA, etal. Phase III trial results for the amyoid PET imaging agent Florbetapir F 18 (18F-AV-45): imaging to histopathologic correlations in an end-of-life human subject study. Alzheimers Dement. 2010; 6(4): S71.CrossRefGoogle Scholar
295.Joshi, A, Koeppe, RA, Fessler, JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009; 46(1): 154159.CrossRefGoogle ScholarPubMed
296.Ng, S, Villemagne, VL, Berlangieri, S, etal. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nucl Med. 2007; 48(4): 547552.CrossRefGoogle ScholarPubMed
297.Hort, J, O'Brien, JT, Gainotti, G, etal. EFNS guidelines for the diagnosis and management of Alzheimer's disease. Eur J Neurol. 2010; 17(10): 12361248.CrossRefGoogle ScholarPubMed
298.Rollin-Sillaire, A, Bombois, S, Deramecourt, V, etal. Contribution of single photon emission computed tomography to the differential diagnosis of dementia in a memory clinic. J Alzheimers Dis. 2012; 30(4): 833845.CrossRefGoogle Scholar
299.Read, SL, Miller, BL, Mena, I, etal. SPECT in dementia: clinical and pathological correlation. J Am Geriatr Soc. 1995; 43(11): 12431247.CrossRefGoogle ScholarPubMed
300.Borghesani, PR, DeMers, SM, Manchanda, V, etal. Neuroimaging in the clinical diagnosis of dementia: observations from a memory disorders clinic. J Am Geriatr Soc. 2010; 58(8): 14531458.CrossRefGoogle ScholarPubMed
301.Burns, A, Rossor, M, Hecker, J, etal. The effects of donepezil in Alzheimer's disease—results from a multinational trial. Dement Geriatr Cogn Disord. 1999; 10(3): 237244.CrossRefGoogle ScholarPubMed
302.Rogers, SL, Farlow, MR, Doody, RS, Mohs, R, Friedhoff, LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology. 1998; 50(1): 136145.CrossRefGoogle ScholarPubMed
303.Tariot, PN, Farlow, MR, Grossberg, GT, etal. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004; 291(3): 317324.CrossRefGoogle ScholarPubMed
304.Ceravolo, R, Volterrani, D, Frosini, D, etal. Brain perfusion effects of cholinesterase inhibitors in Parkinson's disease with dementia. J Neural Transm. 2006; 113(11): 17871790.CrossRefGoogle ScholarPubMed
305.Shimizu, S, Hanyu, H, Iwamoto, T, Koizumi, K, Abe, K. SPECT follow-up study of cerebral blood flow changes during Donepezil therapy in patients with Alzheimer's disease. J Neuroimaging. 2006; 16(1): 1623.CrossRefGoogle ScholarPubMed
306.Nakano, S, Asada, T, Matsuda, H, Uno, M, Takasaki, M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer's disease. J Nucl Med. 2001; 42(10): 14411445.Google ScholarPubMed
307.Nobili, F, Vitali, P, Canfora, M, etal. Effects of long-term Donepezil therapy on rCBF of Alzheimer's patients. Clin Neurophysiol. 2002; 113(8): 12411248.CrossRefGoogle ScholarPubMed
308.Raskind, MA, Peskind, ER, Truyen, L, Kershaw, P, Damaraju, CV. The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch Neurol. 2004; 61(2): 252256.CrossRefGoogle ScholarPubMed
309.Raskind, MA, Peskind, ER, Wessel, T, Yuan, W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000; 54(12): 22612268.CrossRefGoogle ScholarPubMed
310.Heneka, MT, O'Banion, MK, Terwel, D, Kummer, MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm. 2010; 117(8): 919947.CrossRefGoogle ScholarPubMed
311.Wilson, D. Lilly stops Alzheimer's drug trials. The New York Times. 2010 Aug 17.Google Scholar
312.Hirao, K, Ohnishi, T, Hirata, Y, etal. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage. 2005; 28(4): 10141021.CrossRefGoogle ScholarPubMed
313.Hampel, H, Burger, K, Teipel, SJ, etal. Core candidate neurochemical and imaging biomarkers of Alzheimer's disease. Alzheimers Dement. 2008; 4(1): 3848.CrossRefGoogle ScholarPubMed
314.Waldemar, G. Diagnostic markers: when and how? Alzheimers Dement. 2010; 6(4): S87.CrossRefGoogle Scholar
315.Hyman, BT, Phelps, CH, Beach, TG, etal. National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012; 8(1): 113.CrossRefGoogle ScholarPubMed
316.Bateman, RJ, Xiong, C, Benzinger, TL, etal. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease. N Engl J Med. 2012 Jul 11. Scholar
Cited by