Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T04:09:08.936Z Has data issue: false hasContentIssue false

Zirconia-Intercalated Kaolinite: Synthesis, Characterization, and Evaluation of Metal-Ion Removal Activity

Published online by Cambridge University Press:  01 January 2024

Khaled S. Abou-El-Sherbini*
Affiliation:
Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza 12622, Egypt
Mohammed A. Wahba
Affiliation:
Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza 12622, Egypt
Elsayed A. Drweesh
Affiliation:
Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza 12622, Egypt
Adel I. M. Akarish
Affiliation:
Department of Catalysis, Petroleum Refining Division, Egyptian Petroleum Research Institute, Cairo, Egypt
Seham A. Shaban
Affiliation:
Department of Catalysis, Petroleum Refining Division, Egyptian Petroleum Research Institute, Cairo, Egypt
Eman A. M. Elzahany
Affiliation:
Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth st. (former Eltahrir st.), Dokki, Giza 12622, Egypt
*
*E-mail address of corresponding author: kh_sherbini@yahoo.com

Abstract

The intercalation of kaolinite through the insertion of ions or molecules amongst the structural aluminosilicate layers is a vital process in numerous clay-based applications and products. Layer neutrality and hydrogen bonding limits direct intercalation into kaolinite, other than for small molecules. Synthesizing zirconia-intercalated kaolinite is not a straightforward matter. To overcome this barrier, raw Egyptian kaolin (UnK) or its acid-activated product (HK) was sonicated and impregnated in aqueous ZrOCl2·8H2O solution followed by thermal treatment at various temperatures (100, 200, 300, and 500°C). The intercalation process was confirmed using various spectroscopic and analytical techniques. The direct intercalation of ZrO2 into the kaolinite layers was observed even through a mild thermal treatment (100, 200, and 300°C). The mechanism of intercalation was suggested to occur by binding ZrO2 to the Si/AlO groups with a preference for the acid-activated HK, causing variable enlargements of the basal spacing and producing very perturbed layers. Interestingly, the surface area increased by 250% as a result of zirconia intercalation. Scanning electron microscopy (SEM) images showed a remarkable improvement in the stacking order of the kaolinite particles. The impact of ZrO2 intercalation into kaolinite also enhanced its adsorption efficiency for Pb2+, Cu2+, and Cd2+ ions. Preliminary investigations showed that the zirconia-intercalated HK demonstrated a removal efficiency, which is three times greater than that of pristine HK. The adsorption tendency toward Pb2+ ions was greater than those of Cu2+ and Cd2+ and followed the order: Pb2+ >> Cu2+ > Cd2+. The study suggests that the chemical modification of kaolin by zirconia via a direct intercalation technique, which greatly improves its functionality as demonstrated by the selective sorption of heavy metal ions, is worthy of further study.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-El-Sherbini, K. S., Elzahany, E. A. M., Wahba, M. A., Drweesh, S. A., & Youssef, N. S. (2017). Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite. Applied Clay Science, 137, 3342.CrossRefGoogle Scholar
Agarkov, D., Burmistrov, I., Tsybrov, F., Tartakovskii, I., Kharton, V., & Bredikhin, S. (2018). In-situ Raman spectroscopy analysis of the interface between ceria-containing SOFC anode and stabilized zirconia electrolyte. Solid State Ionics, 319, 125129.CrossRefGoogle Scholar
Bailey, S. W. (1966). The status of clay mineral structures. Pp. 123 in Clays and Clay Minerals Proceedings of the Fourteenth National Conference, Berkeley, California (Bailey, S. W., editor). Pergamon.Google Scholar
Baird, R. B., Eaton, A. D., & Rice, E. W. (2017). Standard Methods for the Examination of Water and Wastewater. (23rd edition). American Water Works Association; Water Pollution Control Federation; Water Environment Federation, Washington.Google Scholar
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Beden, B., & Guillaum, I. (1969). Thermal decomposition of zirconyl chloride octahydrate in ambient air. Comptes rendus hebdomadaires des seances de l academie des sciences series c, 269, 16291669.Google Scholar
Berger, M., & Hubbell, J. (1998). 1999 Photon Attenuation Coefficients CRC Handbook of Chemistry and Physics 79th edn, (Lide, D R., editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
Bhattacharyya, K. G., & Gupta, S. S. (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Separation and Purification Technology, 50, 388397.CrossRefGoogle Scholar
Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of Fe(III), Co(II) and Ni(II) on ZrO-kaolinite and ZrO-montmorillonite surfaces in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 7179.CrossRefGoogle Scholar
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Chaabene, S. B., Bergaoui, L., & Ghorbel, A. (2004). Zirconium and sulfated zirconium pillared clays: a combined intercalation solution study and solid characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251, 109115.CrossRefGoogle Scholar
Chen, S. B., Ma, Y. B., Chen, L., & Xian, K. (2010). Adsorption of aqueous Cd(II), Pb(II), Cu(II) ions by nano-hydroxyapatite: single-and multi-metal competitive adsorption study. Geochemical Journal, 44, 233239.CrossRefGoogle Scholar
Cheng, H., Liu, Q., Cui, X., Zhang, Q., Zhang, Z., & Frost, R. L. (2012). Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. Journal of Colloid and Interface Science, 376, 4756.CrossRefGoogle ScholarPubMed
Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society, 92, 19011920.CrossRefGoogle Scholar
Dedzo, G. K., & Detellier, C. (2016). Functional nanohybrid materials derived from kaolinite. Applied Clay Science, 130, 3339.CrossRefGoogle Scholar
Drweesh, S.A., Fathy, N. A., Wahba, M. A., Hanna, A. A., Akarish, A. I. M., Elzahany, E. A. M., El-Sherif, I. Y., & Abou-El-Sherbini, K. S. (2016). Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. Journal of Environmental Chemical Engineering, 4, 16741684.CrossRefGoogle Scholar
Farfan-Torres, E., Sham, E., & Grange, P. (1992). Pillared clays: preparation and characterization of zirconium pillared montmorillonite. Catalysis Today, 15, 515526.CrossRefGoogle Scholar
Farmer, V. C., & Russell, J. D. (1964). The infra-red spectra of layer silicates. Spectrochimica Acta, 20, 11491173.CrossRefGoogle Scholar
Frost, R. L., & Vassallo, A. M. (1996). The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay Minerals, 44, 635651.CrossRefGoogle Scholar
Frost, R. L., Kristof, J., Paroz, G. N., Tran, T. H., & Kloprogge, J. T. (1998). The role of water in the intercalation of kaolinite with potassium acetate. Journal of Colloid and Interface Science, 204, 227236.CrossRefGoogle ScholarPubMed
Gao, W., Zhao, S., Wu, H., Deligeer, W., & Asuha, S. (2016). Direct acid activation of kaolinite and its effects on the adsorption of methylene blue. Applied Clay Science, 126, 98106.CrossRefGoogle Scholar
Gil, A., Vicente, M., Lambert, J.-F., & Gandιa, L. (2001). Platinum catalysts supported on Al-pillared clays: Application to the catalytic combustion of acetone and methyl-ethyl-ketone. Catalysis today, 68, 4151.CrossRefGoogle Scholar
Gong, L., Sun, L.-B., Sun, Y.-H., Li, T.-T., & Liu, X.-Q. (2011). Exploring in situ functionalization strategy in a hard template process: Preparation of sodium-modified mesoporous tetragonal zirconia with superbasicity. The Journal of Physical Chemistry C, 115, 1163311640.CrossRefGoogle Scholar
Gorodylova, N., & Šulcová, P. (2018). DTA-TGA and XRD study of the formation of LISICON-type Li1+xCrxZr2–x(PO4)3 ceramic using ZrOCl2 · 8H2O as precursor. Journal of Thermal Analysis and Calorimetry, 133, 405411.CrossRefGoogle Scholar
Gorodylova, N., Šulcová, P., Bosacka, M., & Filipek, E. (2014). DTATG and XRD study on the reaction between ZrOCl2 · 8H2O and (NH4)2HPO4 for synthesis of ZrP2O7. Journal of Thermal Analysis and Calorimetry, 118, 10951100.CrossRefGoogle Scholar
Grzybek, T., Klinik, J., Olszewska, D., Papp, H., & Smarzowski, J. (2001). The influence of montmorillonite treatment on structure, sorption properties and catalytic behaviour: Part I. Zirconia pillared clays modified with manganese as Denox catalysts. Polish Journal of Chemistry, 75, 857868.Google Scholar
Gupta, S. S., & Bhattacharyya, K. G. (2005). Interaction of metal ions with clays: I. A case study with Pb(II). Applied Clay Science, 30, 199208.CrossRefGoogle Scholar
Gupta, S. S., & Bhattacharyya, K. G. (2006). Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128, 247257.CrossRefGoogle ScholarPubMed
Gupta, S. S., & Bhattacharyya, K. G. (2008). Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 4658.CrossRefGoogle Scholar
Ianchis, R., Corobea, M., Donescu, D., Rosca, I., Cinteza, L., Nistor, L., Vasile, E., Marin, A., & Preda, S. (2012). Advanced functionalization of organoclay nanoparticles by silylation and their polystyrene nanocomposites obtained by miniemulsion polymerization. Journal of Nanoparticle Research, 14, 112.CrossRefGoogle Scholar
Ilić, B. R., Mitrović, A. A., & Miličić, L. R. (2010). Thermal treatment of kaolin clay to obtain metakaolin. Hemijska industrija, 64, 351356.CrossRefGoogle Scholar
Jiang, M.-q., Jin, X.-y., Lu, X.-q., & Chen, Z.-l. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252, 3339.CrossRefGoogle Scholar
Jiang, H., Liu, G., Hu, Y., Xu, L., Yu, Y., Xie, Z., & Chen, H. (2013). Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size. International Journal of Mining Science and Technology, 23, 249253.CrossRefGoogle Scholar
Kenne Dedzo, G., & Detellier, C. (2017). Characterization and Applications of Kaolinite Robustly Grafted by an Ionic Liquid with Naphthyl Functionality. Materials (Basel, Switzerland), 10, 1006.CrossRefGoogle Scholar
Kristó, J., Frost, R. L., Felinger, A., & Mink, J. (1997). FTIR spectroscopic study of intercalated kaolinite. Journal of Molecular Structure, 410, 119122.CrossRefGoogle Scholar
Kristóf, T., Sarkadi, Z., Ható, Z., & Rutkai, G. (2018). Simulation study of intercalation complexes of kaolinite with simple amides as primary intercalation reagents. Computational Materials Science, 143, 118125.CrossRefGoogle Scholar
Ledoux, R. L., & White, J. L. (1966). Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea. Journal of Colloid and Interface Science, 21, 127152.CrossRefGoogle Scholar
Lee, D. H., & Moon, H. (2001). Adsorption equilibrium of heavy metals on natural zeolites. Korean Journal of Chemical Engineering, 18, 247256.CrossRefGoogle Scholar
Libowitzky, E. (1999). Correlation of O-H stretching frequencies and O-H O hydrogen bond lengths in minerals. Pp. 103115 in: Hydrogen Bond Research (Schuster, P. & Mikenda, W., editors). Springer, Vienna.CrossRefGoogle Scholar
Libowitzky, E., & Beran, A. (2004). IR spectroscopic characterisation of hydrous species in minerals. Spectroscopic Methods in Mineralogy, 6, 227279.CrossRefGoogle Scholar
Majd, M. T., Davoudi, M., Ramezanzadeh, M., Ghasemi, E., Ramezanzadeh, B., & Mahdavian, M. (2020). Construction of a smart active/barrieranti-corrosion system based on epoxy-ester/zinc intercalated kaolin nanocontainer for steel substrate. Construction and Building Materials, 247, 118555.CrossRefGoogle Scholar
Makó, É., Kovács, A., Katona, R., & Kristóf, T. (2016). Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 265273.CrossRefGoogle Scholar
Matsui, K., & Ohgai, M. (2002). Formation Mechanism of Hydrous Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions: IV, Effects of ZrOCl2 Concentration and Reaction Temperature. Journal of the American Ceramic Society, 85, 545553.CrossRefGoogle Scholar
Miehé-Brendlé, J., Khouchaf, L., Baron, J., Le Dred, R., & Tuilier, M. H. (1997). Zr-exchanged and pillared beidellite: preparation and characterization by chemical analysis, XRD and Zr K EXAFS. Microporous Materials, 11, 171183.CrossRefGoogle Scholar
Miura, N., Sato, T., Anggraini, S.A., Ikeda, H., & Zhuiykov, S. (2014). A review of mixed-potential type zirconia-based gas sensors. Ionics, 20, 901925.CrossRefGoogle Scholar
Mnasri, S., & Frini-Srasra, N. (2013). Synthesis, characterization and catalytic evaluation of zirconia-pillared bentonite for 1, 3-dioxalane synthesis. Surface Engineering and Applied Electrochemistry, 49, 336347.CrossRefGoogle Scholar
Nagarajan, V., & Rao, K. (1990). Thermally induced chemical and structural changes in alumina-zirconia-silica gels during the formation of ceramic composites. Journal of Solid State Chemistry, 88, 419428.CrossRefGoogle Scholar
Ngnie, G., Dedzo, G. K., & Detellier, C. (2016). Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton transactions, 45, 90659072.CrossRefGoogle ScholarPubMed
Ohtsuka, K., Hayashi, Y., & Suda, M. (1993). Microporous zirconiapillared clays derived from three kinds of zirconium polynuclear ionic species. Chemistry of Materials, 5, 18231829.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M., & Quirk, J. P. (1968). Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. The Journal of Physical Chemistry, 72, 241249.CrossRefGoogle Scholar
Sari, A., & Tuzen, M. (2014). Cd(II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 88–89, 6372.CrossRefGoogle Scholar
Shirsath, S. R., Patil, A. P., Patil, R., Naik, J. B., Gogate, P. R., & Sonawane, S. H. (2013). Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrasonics Sonochemistry, 20, 914923.CrossRefGoogle ScholarPubMed
Singh, B. & Mackinnon, I. D. (1999). Intercalation of kaolins by alkaline earth metal salts. Pp. 489495 in 11th International Clay Conference, Ottawa.Google Scholar
Solovkin, A. S., & Tsvetkova, Z. N. (1962). The chemistry of aqueous solutions of zirconium salts (Does the zirconyl ion exist?). Russian Chemical Reviews, 31, 655699.CrossRefGoogle Scholar
Štefanić, G., Musić, S., Popović, S., & Furić, K. (1996). Formation of ZrO2 by the thermal decomposition of zirconium salts. Croatica Chemica Acta,69, 223239.Google Scholar
Swindale, L. D. (1975). The crystallography of minerals of the kaolin group. Pp. 121154 in Soil Components: Vol. 2: Inorganic Components (Gieseking, J. E., editor). Springer, Berlin Heidelberg.CrossRefGoogle Scholar
Takagi, S. (1954). Zirconium compounds. I. Thermal decomposition of zirconium chloride octahydrate. Journal of the Chemical Society of Japan, 75, 637639.Google Scholar
Tunney, J. J., & Detellier, C. (1993). Interlamellar covalent grafting of organic units on kaolinite. Chemistry of Materials, 5, 747748.CrossRefGoogle Scholar
Valášková, M., Tokarský, J., Hundáková, M., Zdrálková, J., & Smetana, B. (2013). Role of vermiculite and zirconiumvermiculite on the formation of zircon-cordierite nanocomposites. Applied Clay Science, 75, 100108.CrossRefGoogle Scholar
Valverde, J. L., de Lucas, A., Sánchez, P., Dorado, F., & Romero, A. (2003). Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B: Environmental, 43, 4356.CrossRefGoogle Scholar
Vaughan, D. E. (1994). Pillared interlayered kandite clay compositions. Google Patents.Google Scholar
Vera, C. R., Pieck, C. L., Shimizu, K., & Parera, J. M. (2002). Tetragonal structure, anionic vacancies and catalytic activity of SO42– -ZrO2 catalysts for n-butane isomerization. Applied Catalysis A: General, 230, 137151.CrossRefGoogle Scholar
Wada, K. (1961). Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist: Journal of Earth and Planetary Materials, 46, 7891.Google Scholar
Wang, X., Liu, T., Yu, J., Li, L., & Zhang, X. (2019). A new application of CexZr1– xO2 as dense diffusion barrier in limiting current oxygen sensor. Sensors and Actuators B: Chemical, 285, 391397.CrossRefGoogle Scholar
Zaharia, A., Perrin, F.-X., Teodorescu, M., Radu, A.-L., Iordache, T.-V., Florea, A.-M., Donescu, D., & Sarbu, A. (2015). New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane. Physical Chemistry Chemical Physics, 17, 2490824916.CrossRefGoogle ScholarPubMed
Zhang, Q.-h., Chen, G.-q., & Xing, T.-l. (2017). Silk flame retardant finish by ternary silica sol containing boron and nitrogen. Applied Surface Science, 421, 5260.CrossRefGoogle Scholar
Supplementary material: File

Abou-El-Sherbin et al. supplementary material
Download undefined(File)
File 15.2 MB