Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T17:51:13.609Z Has data issue: false hasContentIssue false

Zeolites in Eocene Basaltic Pillow Lavas of the Siletz River Volcanics, Central Coast Range, Oregon

Published online by Cambridge University Press:  02 April 2024

Terry E. C. Keith
Affiliation:
U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025
Lloyd W. Staples
Affiliation:
Department of Geology, University of Oregon, Eugene, Oregon 97403

Abstract

Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chabazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-stilbite, stilbite-heulandite-chabazite, stilbite-apophyllite-chabazite, and natrolite-mesolite-laumontite.

Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60°–70°C) submarine hydrothermal event, or by reactions of cold (∼10°C) meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in closed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

Резюме

Резюме

Цеолиты и связанные с ними минералы встречаются в толеитовой базальтовой подушковой лаве, которая является частью эоценовых вулканических пород Сайлетз Ривер в центральной области орегонского побережья. Районирование цеолитовых отложений не является очевидным; цеолиты формировались в узлах, тпещинах и щелях, но самое большое их количество находится в центральных пустотах базальтовых подушек. Цеолиты и связанные с ними минералы находятся в следующем общем порядке парагенетической серии: смектит, пирит, кальцит (малые шарики), томсонит, на-тролит, анальцим, сколесит, месолит, стильбит, гейландит, апофиллит, хабазит, морденит, кальцит (разносторонние тречгольники и спаренные ромбоэдры), ломонит, и аметистовый кварц. Обычные трех-минеральные составы это: натролит-аналышм-стильбит, стильбит-гейландит-хабазит, стиль-бит-апофиллит-хабазит, и натролит-месолит-ломонит.

Изменение базальтового стекла, которое сначала находилось в большом количестве, кажется значительным фактором в процессе формирования цеолитов. Изотопные данные указывают на то, что цеолитизация происходила во время низко-температурного подводного гидротермального превращения, или путем реакции холодной (∼ 10°С) атмосферической воды с базальтом в течение длинного периода времени. Залегание различных минеральных отложений в пустотах соседних базальтовых подушек указывает на то, что эти минералы кристаллизировались в замкнутых системах, которые были отвелены в виде трещин и узлов, уплотненных осаждением смектита и первоначальных цеолитов. Хотя полная химическая композиция минеральных отложений в пустотах являетсая подобной, различные минералы формировались в результате чувствительности цеолитовых минералов к небольшим изменениям в физических и химических условиях внутри индивидуальных пустот. [Е.G.]

Resümee

Resümee

Zeolithe und Begleitminerale treten in einer tholeitbasaltischen Abfolge von Pillowlaven auf, die einen Teil der eozänen Siletz River Vulkane, Central Coast Range, Oregon, darstellt. Eine regionale zonare Verteilung der Zeolithvergesellschaftungen ist nicht zu beobachten; die Zeolithe bildeten sich in Klüften, Spalten, und Zwischenräume, obwohl die meisten in zentralen Hohlräumen der Basaltpillows auftreten. Die identifizierten Zeolithe und Begleitminerale sind in der allgemeinen paragenetischen Abfolge: Smektit, Pyrit, Calcit (kleine Kugeln), Thomsonit, Natrolith, Analcim, Skolezit, Mesolith, Stilbit, Heulandit, Apophyllit, Chabasit, Mordenit, Calcit (Skalenoeder und verzwillingte Rhomboeder), Laumontit, und Amethyst-artiger Quarz. Häufige Vergesellschaftungen aus drei Mineralen sind Natrolith-Analcim-Stilbit, Stilbit-Heulandit-Chabasit, Stilbit-Apophyllit-Chabasit, und Natrolith-Mesolith-Laumontit.

Die Umwandlung von basaltischem Glas, das ursprünglich sehr häufig war, scheint bei der Zeolithbildung ein wichtiger Faktor gewesen zu sein. Isotopen-Daten deuten darauf hin, daß die Zeolithisierung während eines niedrig temperierten (60°–70°C) submarinen hydrothermalen Ereignisses stattgefunden hat, oder durch die Reaktion von kaltem (etwa 10°C) meteorischem Wasser mit dem Basalt über eine lange Zeit. Das Auftreten verschiedener Mineralvergesellschaftungen in den Hohlräumen benachbarter Basaltpillows deutet darauf hin, daß diese Minerale in geschlossenen Systemen kristallisierten, die voneinander getrennt waren, da die Spalten und Klüfte durch die Ablagerung von Smektit und früh gebildeten Zeolithen verschlossen waren. Obwohl der Gesamtchemismus der Mineralvergesellschaftungen in den Hohlräumen ähnlich ist, bildeten sich verschiedene Mineralarten. Der Grund ist die Empfindlichkeit der Zeolithminerale gegenüber geringen Änderungen der physikalischen und chemischen Bedingungen innerhalb der einzelnen Hohlräume. [U.W.]

Résumé

Résumé

Des zéolites et minéraux associés se trouvent dans une séquence de laves “coussins” tholéiitiques basaltiques qui constitue une partie des roches volcaniques Eocènes de la Rivière Siletz dans la Coast Range Centrale, Oregon. Un zoning régional d'assemblages de zéolites n'est pas apparent; les zéolites se sont formées dans des joints, fractures et interstices, quoique la plupart se trouvent dans des cavités centrales de coussins de basalt. Les zéolites et minéraux associés identifiés, en ordre général de séquence paragénétique sont smectite, pyrite, calcite (petites sphères), thomsonite, natrolite, analcime, scolecite, mésolite, stilbite, heulandite, apophyllite, chabazite, mordénite, calcite (scalénohédrons et rhombohédrons jumellés), laumonite, et quartz amethystine. Des assemblages de 3 minéraux communs sont natrolite-analcime-stilbite, stilbite-heulandite-chabazite, stilbite-apophyllite-chabazite, et natrolite-mésolite-laumonite.

L'altération de verre basaltique, qui était abondant initialement, semble avoir été un facteur important dans la formation de zéolites. Les données isotopiques suggérent que la zéolitisation s'est passée pendant un évenement hydrothermique sousmarin à basse température (60°–70°C), ou par des réactions d'eau météorique froide avec du basalt pendant longtemps. L'emplacement de différents assemblages minéraux dans les cavités de coussins de basalt adjacents indique que ces minéraux se sont cristallisés dans des systèmes fermés qui étaient isolés, comme les fractures et les joints étaient hermétiquement fermés par le dépôt de smectite et des premières zéolites. Quoique la composition chimique totale des assemblages minéraux dans les cavités est semblable, des espèces de minéraux différents se sont formées à cause de la sensitivité des minéraux zéolites à de légères variations dans les conditions physiques et chimiques au sein des cavités individuelles. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A., Pongiluppi, D. and Vezzalina, G., 1982 The crystal chemistry of natrolite, mesolite and scolecite N. Jb. Miner. Abh. 143 231248.Google Scholar
Arnórsson, S., Gunnlaugsson, E. and Svavarsson, H., 1983 The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions Geochim. Cosmochim. Acta 47 547566.CrossRefGoogle Scholar
Aumento, F., Loncarevic, B. and Ross, D.I., 1971 Hudson geotraverse: geology of the Mid-Atlantic Ridge at 45°N Phil. Trans. Roy. Soc. Lond. A 268 623650.Google Scholar
Ballard, R. D. and Moore, J. G., 1977 Photographic Atlas of the Mid-Atlantic Ridge Rift Valley New York Springer-Verlag.CrossRefGoogle Scholar
Betz, V., 1981 Zeolites from Iceland and the Faeroes Mineral. Record 12 526.Google Scholar
Boles, J. R. and Mumpton, F. A., 1977 Zeolites in low-grade metamorphic rocks Mineralogy and Geology of Natural Zeolites Washington, D.C. Short Course Notes 4, Mineral. Soc. Amer. 103136.CrossRefGoogle Scholar
Carpenter, A. B., 1971 Graphical analysis of zeolite mineral assemblages from the Bay of Fundy area, Nova Scotia Molecular Sieve Zeolites—I: Advances in Chemistry Series 101 328332.CrossRefGoogle Scholar
Cerny, P., 1965 Ionic substitutions in natural stilbite N. Jb. Miner. Mh. 7 198208.Google Scholar
Clark, T.E., 1964 Zeolites from the Kings Valley and Coffin Butte areas, Benton County, Oregon Eugene, Oregon M.S. thesis, Univ. Oregon.Google Scholar
Coombs, D. S., Ellis, A. J., Fyfe, W. S. and Taylor, A. M., 1959 The zeolite facies, with comments on the interpretation of hydrothermal syntheses Geochim. Cosmochim. Acta 17 53107.CrossRefGoogle Scholar
Dunn, P. J., Rouse, R. C. and Norberg, J. A., 1978 Hy-droxyapophyllite, a new mineral, and a redefinition of the apophyllite group I. Description, occurrences, nomenclature Amer. Mineral. 63 196199.Google Scholar
Fenner, C. N., 1910 The Watchung basalt and the para-genesis of its zeolites and other secondary minerals New York Acad. Sci. Ann. 20 93187.CrossRefGoogle Scholar
Francheteau, J., Needham, D., Juteau, T. and Rangin, C., 1980 Naissance d’un Océan Paris Centre National pour l’Exploitation des Océans.Google Scholar
Friedman, I. and O’Neil, J. R., 1977 Compilation of stable isotope fractionation factors of geochemical interest U.S. Geol. Surv. Prof. Pap. .CrossRefGoogle Scholar
Grenne, T. and Roberts, D., 1983 Volcanostratigraphy and eruptive products of the Jonsvatn Greenstone Formation, central Norwegian Caledonides Nor. Geol. Unders. 387 2137.Google Scholar
Höller, H., Wirsching, U., Sand, L. B. and Mumpton, F. A., 1978 Experiments on the formation of zeolites by hydrothermal alteration of volcanic glasses Natural Zeolites, Occurrence, Properties, Use New York Pergamon Press, Elms-ford 329336.Google Scholar
Kostov, I., Subbarao, K. V. and Sukheswala, R. N., 1981 Zeolitization processes in trap volcanics Deccan Volcanism and Related Basalt Provinces in Other Parts of the World Bangalore Geological Society of India 428433.Google Scholar
Kristmannsdóttir, H., Tomasson, J., Sand, L. B. and Mumpton, F. A., 1978 Zeolitezones in geothermal areas in Iceland Natural Zeolites: Occurrence, Properties, Use New York Pergamon Press, Elmsford 277284.Google Scholar
Lawrence, J. R., Drever, J. I., Anderson, T. F. and Brueckner, H. K., 1979 Importance of alteration of volcanic material in the sediments of Deep Sea Drilling Site 323: chemistry, 8O/16O and 87Sr/86Sr Geochim. Cosmochim. Acta 43 573588.CrossRefGoogle Scholar
Liou, J. G., 1971 P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2Os-SiO2-H2O JPetrol 12 379411.Google Scholar
Lyttle, N. A. and Clarke, D. B., 1975 New analyses of Eocene basalt from the Olympic Peninsula, Washington Geol. Soc. Amer. Bull. 86 421427.2.0.CO;2>CrossRefGoogle Scholar
McCulloh, T. H., Frizzell, V. A. Jr., Stewart, R. J. and Barnes, I., 1981 Precipitation of laumontite with quartz, the-nardite, and gypsum at Sespe Hot Springs, western Transverse Ranges, California Clays & Clay Minerals 29 353364.CrossRefGoogle Scholar
Melson, W. G., Thompson, G. and van Andel, H., 1968 Volcanism and metamorphism in the mid-Atlantic ridge, 22°N latitude JGeophys. Res. 73 59255941.CrossRefGoogle Scholar
Miyashiro, A., Shido, F. and Ewing, M., 1971 Metamorphism on the Mid-Atlantic Ridge near 24° and 30°N Phil. Trans. Roy. Soc. Lond. A 268 589603.Google Scholar
Moore, J. G., 1975 Mechanism of formation of pillow lava Amer. Scientist 63 269277.Google Scholar
Motti, M. J., 1983 Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges Geol. Soc. Amer. Bull. 94 161180.2.0.CO;2>CrossRefGoogle Scholar
Motti, M. J. and Holland, H. D., 1978 Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater Geochim. Cosmochim. Acta 42 11031115.CrossRefGoogle Scholar
Nashar, B. and Basden, R., 1965 Solubility of basalt under atmospheric conditions of temperature and pressure Mineral. Mag. 35 408411.Google Scholar
Nashar, B. and Davies, M., 1960 Secondary minerals of the Tertiary basalts, Barrington, New South Wales Mineral. Mag. 32 480491.Google Scholar
O’Neil, J. R., Clayton, R. N. and Mayeda, T. K., 1969 Oxygen isotope fractionation in divalent metal carbonates JChem. Phys. 51 55475558.Google Scholar
Rye, R. O. and Ohmoto, H., 1974 Sulfur and carbon isotopes and ore genesis: a review Econ. Geol. 69 826842.CrossRefGoogle Scholar
Schaller, W. T., 1932 The crystal cavities ofthe New Jersey zeolite region U.S. Geol. Surv. Bull. .Google Scholar
Sheppard, R. A., Gude, A. J. 19703rd., Calcic siliceous chabazite from the John Day Formation, Grant County, Oregon U.S. Geol. Surv. Prof Pap. 700 D176 D180.Google Scholar
Snavely, P. D. Jr., MacLeod, N. S. and Wagner, H. C., 1968 Tholeiitic and alkalic basalts of the Eocene Siletz River Volcanics, Oregon Coast Range Amer. J. Sci. 266 454481.CrossRefGoogle Scholar
Snavely, P. D. Jr. and Wagner, H. C., 1963 Tertiary geologic history of western Oregon and Washington Wash. Div. Mines Geol. Rept. Inv. .Google Scholar
Snavely, P.D. Jr. and Wagner, H.C., 1968 Geologic sketch of northwestern Oregon U.S. Geol. Surv. Bull. 1181 M1 M17.Google Scholar
Staples, L. W., 1946 Origin of spheroidal clusters of anal-rime from Benton County, Oregon Amer. Mineral. 31 574581.Google Scholar
Sukheswala, R. N., Avasia, R. K. and Gangopadhyay, M., 1974 Zeolites and associated secondary minerals in the Deccan traps of western India Mineral. Mag. 39 658671.CrossRefGoogle Scholar
Taylor, H. P. Jr., 1968 The oxygen isotope geochemistry of igneous rocks Contr. Mineral. Petrol. 19 171.CrossRefGoogle Scholar
Taylor, H. P. Jr., 1974 The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Econ. Geol. 69 843883.CrossRefGoogle Scholar
Walker, G. P. L., 1960 Zeolite zones and dike distribution in relation to the structure of basalts in eastern Iceland J. Geol. 68 515528.CrossRefGoogle Scholar
Walker, G. P. L., 1960 The amygdale minerals in the Tertiary lavas of Ireland. III. Regional distribution Mineral. Mag. 32 503527.Google Scholar
Waters, A. C., 1960 Determining direction of flow in basalts Amer. J. Sci. 258 350366.Google Scholar
Westercamp, D., 1981 Distribution and volcano-structural control ofzeolites and other amygdale minerals in the island of Martinique, F.W.I. JVole. Geoth. Res. 11 353365.CrossRefGoogle Scholar