Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T04:56:39.108Z Has data issue: false hasContentIssue false

Thermal Behavior of Pyrophyllite Ore during Calcination for Thermal Activation for Aluminum Extraction by Acid Leaching

Published online by Cambridge University Press:  01 January 2024

Murat Erdemoğlu
Affiliation:
Department of Mining Engineering, İnönü University, Malatya, Turkey
Mustafa Birinci
Affiliation:
Department of Mining Engineering, İnönü University, Malatya, Turkey
Turan Uysal*
Affiliation:
Department of Mining Engineering, İnönü University, Malatya, Turkey
*
*E-mail address of corresponding author: turan.uysal@inonu.edu.tr

Abstract

In the production of alumina (Al2O3) from clays by acid leaching, thermal activation by calcination is applied widely as a pre-treatment to improve the dissolution of aluminum. Previous studies have focused only on the thermal behavior of high-purity kaolinite and pyrophyllite, individually. However, thermal activation of complex clay ores containing several silicate minerals and their effect on aluminum extraction have not been studied. The purpose of the present study was to characterize the thermal behavior of a clay ore containing mainly pyrophyllite (Al2Si4O10(OH)2), kaolinite (Al2Si2O5(OH)4), muscovite (KAl2(AlSi3O10)(OH)2), quartz (SiO2), and kyanite (Al2SiO5) from the Pütürge clay deposits (Malatya, Turkey) for possible use in alumina (Al2O3) production by acid leaching. The ore and its calcination products obtained at various temperatures were characterized with respect to their mineral paragenesis, crystal structure, surface morphology, and thermal, calorimetric, and aluminum dissolution properties in order to understand the changes that occurred. Aluminum recovery in the leach solution increased in direct proportion to the dehydroxylation degree (Dtg) of the ore as the calcination temperature increased to 900°C. A maximum aluminum extraction of 90.57% was achieved by leaching of the product from calcination at 900°C. Aluminum extraction decreased sharply above that temperature, even though Dtg increased a little. By increasing the calcination temperature; the structures of pyrophyllite, kaolinite, and muscovite were destroyed by dehydroxylation, resulting in the exfoliation of the mineral layers, thus, a mixture of dehydroxylated phases formed. Depending mainly on the temperature range at which each of the dehydroxylated phases is durable, aluminum could be leached to some extent. The sharp decrease in the extraction of aluminum, iron, and potassium at higher temperatures was attributed to compaction of previously exfoliated layers of the minerals through re-crystallization to form mullite-like structures which seemed insensitive to acid attack during the leaching.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adekitan, O. A., & Ayininuola, G. M. (2017). Optimizing the thermal treatment of Abeokuta kaolin (south-west Nigeria) for production of natural pozzolan. African Journal of Science, Technology, Innovation and Development, 9, 361365.CrossRefGoogle Scholar
Al-Ajeel, A. W. A., & Al-Sindy, S. I. (2006). Alumina recovery from Iraqi kaolinitic clay by hydrochloric acid route. Iraqi Bulletin of Geology and Mining, 2, 6776.Google Scholar
Altιokka, M. R., & Hoşgün, H. L. (2003). Investigation of the dissolution kinetics of kaolin in HCl solution. Hydrometallurgy, 68, 7781.CrossRefGoogle Scholar
Altιokka, M. R., Akalιn, H., Melek, N., & Akyalçιn, S. (2010). Investigation of the dissolution kinetics of meta-kaolin in H2SO4 solution. Industrial & Engineering Chemistry Research, 49,12379–12382.Google Scholar
Al-Zahrani, A. A., & Abdul-Majid, M. H. (2009). Extraction of alumina from local clays by hydrochloric acid process. Journal of King Abdulaziz University: Engineering Sciences, 20, 2941.Google Scholar
Aydoğmuş, R. (2019). Activation of enriched Malatya-Pütürge pyrophyllite ore for alumina production. Master of Science Thesis, $IDnönü University, Turkey.Google Scholar
Aydoğmuş, R., & Erdemoğlu, M. (2019). Acidic leaching of thermally activated pyrophyllite concentrate for alumina production. 7th International Congress of Mining Machinery and Technologies, $IDzmir, Turkey.Google Scholar
Barry, T. S., Uysal, T., Birinci, M., & Erdemoğlu, M. (2019). Thermal and mechanical activation in acid leaching processes of non-bauxite ores available for alumina production – A review. Mining Metallurgy & Exploration, 36, 557569.Corrected as “Barry T.S” in the reference.CrossRefGoogle Scholar
Bazin, C., El-Ouassiti, K., & Ouellet, V. (2007). Sequential leaching for the recovery of alumina from a Canadian clay. Hydrometallurgy, 88, 196201.CrossRefGoogle Scholar
Birinci, M., Uysal, T., Erdemoğlu, M., Porgalι, E., & Barry, T.S. (2017). Acidic leaching of thermally activated pyrophyllite ore from Pütürge (Malatya-Turkey) deposit. 17th Balkan Mineral Processing Congress, Antalya, Turkey.Google Scholar
Blasy, M. (2014). Characterization of a metasomatic muscovite after pegmatitic potash feldspar with a soapstone appearence, Eastern Desert, Egypt. International Journal of Science & Engineering Research, 5, 9496.Google Scholar
Bozkaya, Ö., Yalçιn, H., Basibüyük, Z., & Bozkaya, G. (2007). Metamorphic-hosted pyrophyllite and dickite occurrences from the hydrous Al-Silicate deposits of the Malatya-Pütürge Region. Central Eastern Anatolia, Turkey. Clays and Clay Minerals, 55, 423442.CrossRefGoogle Scholar
Bragg, W., & Gibbs, R. E. (1925). The structure of α and β quartz. Proceedings of the Royal Society of London A, 109(751), 405427.Google Scholar
Brigatti, M. F., Frigieri, P., & Poppi, L. (1998). Crystal chemistry of Mg-, Fe-bearing muscovites-2M1. American Mineralogist, 83, 775785.CrossRefGoogle Scholar
D'Eliaa, A., Pinto, D., Eramo, G., Giannossa, L. C., Ventruti, G., & Laviano, R. (2018). Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: mechanical, thermal activation in red/ox atmosphere and their combination. Applied Clay Science, 152, 921.CrossRefGoogle Scholar
Erdemoğlu, M., Birinci, M., Uysal, T., Porgalι, E., & Barry, T. S. (2018). Acid leaching performance of mechanically activated pyrophyllite ore for Al2O3 extraction. Journal of Materials Science, 53, 1380113812.CrossRefGoogle Scholar
Fitzgerald, J. J., Hamza, A. I., Ara, S. F., & Bronnimann, C. E. (1996). Solid-State 27Al and 29Si NMR and 1H CRAMPS studies of the thermal transformations of the 2: 1 phyllosilicate pyrophyllite. The Journal of Physical Chemistry, 100, 1735117360.CrossRefGoogle Scholar
Gonzáles-Miranda, F. M., Garzon, E., Reca, J., Pérez-Villarejo, L., Martínez-Martínez, S., & Sánchez-Soto, P. J. (2018). Thermal behaviour of sericite clays as precursors of mullite materials. Journal of Thermal Analysis and Calorimetry, 132, 967977.CrossRefGoogle Scholar
Gridi-Bennadji, F., Beneu, B., Laval, J. P., & Blanchart, P. (2008). Structural transformations of muscovite at high temperature by X-ray and neutron diffraction. Applied Clay Science, 38, 259267.CrossRefGoogle Scholar
Guggenheim, S., Chang, Y. H., & Koster van Groos, A. F. (1987). Muscovite dehydroxylation: High-temperature studies. American Mineralogist, 72, 537550.Google Scholar
Gupta, C.K., & Mukherjee, T.K. (1990). Hydrometallurgy in Extraction Processes. Boca Raton, Florida, USA, CRC Press Inc, Vol. 1, 225 pp.Google Scholar
Habashi, F. (1999). Textbook of Hydrometallurgy. Second Edition, Metallurgie Extractive, Quebec, Canada, 739 p.Google Scholar
Hulbert, S. F., & Huff, D. E. (1970). Kinetics of alumina removal from a calcined kaolin with nitric, sulphuric and hydrochloric acids. Clay Minerals, 8, 337345.CrossRefGoogle Scholar
Ilić, B., Radonjanin, V., Malešev, M., Zdujić, M., & Mitrović, A. (2016). Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Applied Clay Science, 123, 173181.CrossRefGoogle Scholar
Kakali, G., Perraki, T., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.CrossRefGoogle Scholar
Kyriakogona, K., Giannopoulou, I., & Panias, D. (2017). Extraction of aluminum from kaolin: a comparative study of hydrometallurgical processes. Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering, Rome, Italy, 133, 16.Google Scholar
Li, G., Zeng, J. H., Luo, M., Liu, M., Jiang, T., & Qiu, G. (2014). Thermal transformation of pyrophyllite and alkali dissolution behavior of silicon. Applied Clay Science, 99, 282288.CrossRefGoogle Scholar
Lima, P. E. A., Angélica, R. S., & Neves, R. F. (2014). Dissolution kinetics of metakaolin in sulfuric acid: Comparison between heterogeneous and homogeneous reaction methods. Applied Clay Science, 88–89, 159162.CrossRefGoogle Scholar
Lundell, G. E. F., & Knowles, H. B. (1929). Use of 8-hydroxyquinoline in separations of aluminum. Journal of Research of the National Bureau of Standards, 5, 9196.CrossRefGoogle Scholar
Mackenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., & Browden, M. E. (1985). Thermal reactions of pyrophyllite studied by high-resolution solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy. Journal of the American Ceramic Society, 68, 266272.CrossRefGoogle Scholar
Mariani, E., Brodie, K. H., & Rutter, E. H. (2006). Experimental deformation of muscovite shear zones at high temperatures under hydrothermal conditions and the strength of phyllosilicate-bearing faults in nature. Journal of Structural Geology, 28, 15691587.CrossRefGoogle Scholar
Mikuni, A., Wei, C., Komatsu, R., & Ikeda, K. (2005). Thermal alteration of pyrophyllites and elution properties of the calcined pyrophyllite in alkali solution. Journal of the Society of Inorganic Materials, Japan, 12, 191199.Google Scholar
Numluk, P., & Chaisena, A. (2012). Sulfuric acid and ammonium sulfate leaching of alumina from Lampang clay. E-Journal of Chemistry, 9, 13641372.CrossRefGoogle Scholar
Olaremu, A. G. (2015). Sequential leaching for the production of alumina from a Nigerian clay. International Journal of Engineering Technology, Management and Applied Sciences, 3, 103109.Google Scholar
Öner, F., & Taş, A. (2013). Geochemistry, mineralogy and genesis of pyrophyllite deposits in the Pötürge Region (Malatya, Eastern Turkey). Geochemistry International, 51, 140154.CrossRefGoogle Scholar
Pérez-Maqueda, L. A., Pérez-Rodriguez, J. L., Scheiffele, G. W., Justo, A., & Sánchez-Soto, P. J. (1993). Thermal analysis of ground kaolinite and pyrophyllite. Journal of Thermal Analysis, 39, 10551067.Google Scholar
Rahier, H., Wullaert, B., & Van Mele, B. (2000). Influence of the degree of dehydroxylation of kaolinite on the properties of aluminosilicate glasses. Journal of Thermal Analysis and Calorimetry, 62, 417427.CrossRefGoogle Scholar
Sánchez-Soto, P. J., & Pérez-Rodriguez, J. L. (1989a). Thermal-analysis of pyrophyllite transformations. Thermochimica Acta, 138, 267276.CrossRefGoogle Scholar
Sánchez-Soto, P. J., & Pérez-Rodriguez, J. L. (1989b). SEM study of pyrophyllite high-temperature transformations. Journal of Materials Science, 24, 37743778.CrossRefGoogle Scholar
Sánchez-Soto, P. J., & Pérez-Rodriguez, J. L. (1998). General properties of pyrophyllite. Part II. Deposits, applications and use as ceramic raw material. The Journal of the Spanish Ceramic and Glass Society, 37, 359368.Google Scholar
Sánchez-Soto, P. J., Sobrados, I., Sanz, J., & Pérez-Rodríguez, J. L. (1993). 29-Si and 27-Al magic angle spinning nuclear magnetic resonance study of the thermal transformations of pyrophyllite. Journal of the American Ceramic Society, 76, 30243028.CrossRefGoogle Scholar
Schomburg, J. (1985). Thermal investigation of pyrophyllites. Thermochimica Acta, 93, 521524.CrossRefGoogle Scholar
Schomburg, J., & Zwahr, H. (1997). Thermal differential diagnosis of mica mineral group. Journal of Thermal Analysis, 48, 135139.CrossRefGoogle Scholar
Uygun, A., & Solakoğlu, E. (2002). Geology and origin of pyrophyllite deposits in Malatya Pütürge Massive (In Turkish). Bulletin of the Mineral Research and Exploration, 123–124, 1319.Google Scholar
Wardle, R., & Brindley, G. W. (1972). The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate. American Mineralogist, 57, 732750.Google Scholar
Wu, J. J., Chen, H., Zhao, S., & Li, B. (2012). The impact of heat treatment on pyrophyllite structure and acid-soluble properties. Advanced Materials Research, 366, 326329.CrossRefGoogle Scholar
Zhang, Z., & Wang, L. (1998). X-ray powder diffraction analysis on characteristics of heating phase transformation of pyrophyllite. Journal of the Chinese Ceramic Society, 26, 618629.Google Scholar