Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T11:49:12.234Z Has data issue: false hasContentIssue false

Thermal Behavior and Decomposition of Intercalated Kaolinite

Published online by Cambridge University Press:  28 February 2024

Magda Gábor
Affiliation:
Institute of Inorganic and Analytical Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
Mária Tóth
Affiliation:
Research Laboratory of Geochemistry of the Hungarian Academy of Sciences, Budapest, Hungary
János Kristóf
Affiliation:
Department of Analytical Chemistry, University of Veszprém, H-8201, Veszprém, P.O. Box 158, Hungary
Gábor Komáromi-Hiller
Affiliation:
Institute of Inorganic and Analytical Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary

Abstract

Intercalation complexes of a Hungarian kaolinite were prepared with hydrazine and potassium acetate. The thermal behavior and decomposition of the kaolinite-potassium acetate complex was studied by simultaneous TA-EGA, XRD, and FTIR methods. The intercalation complex is stable up to 300°C, and decomposition takes place in two stages after melting of potassium acetate intercalated in the interlayer spaces. Dehydroxylation occurred, in the presence of a molten phase, at a lower temperature than for the pure kaolinite. FTIR studies revealed that there is a sequence of dehydroxylation for the various OH groups of intercalated kaolinite. The reaction mechanism was followed up to 1000°C via identification of the gaseous and solid decomposition products formed: H2O, CO2, CO, C3H6O, intercalated phases with basal spacings of 14.1 Å, 11.5 Å, and 8.5 Å as well as elemental carbon, K4H2(CO3)3 · 1.5H2O, K2CO3 · 1.5H2O, and KAlSiO4.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deeds, C. T., van Olphen, H. J., and Bradley, W. F. 1966 . Intercalation and interlayer hydration of minerals of the kaolinite group: Proc. Int. Clay Conf., Jerusalem 2: 183198.Google Scholar
Douglas, M. C., Ewan, Mac, and Wilson, M. J. 1980 . Crystal Structure of Clay Minerals and Their X-ray Identification, Mineralogical Society, London, 241242.Google Scholar
Fenoll Hach-Ali, P., and Weiss, A. 1969 . Estudio de la reacción de caolinita y N-metil formamida. Annales de la Real Sodièdad Española da Fisica y Quimica LXV, 769790.Google Scholar
Fernandez-Gonzales, M., Weiss, A., and Lagaly, G. 1976 . Über das verhalten nordwestspanischer Kaoline bei der Bildung von Einlogerungsverbindungen. Keram. Z. 28: 5558.Google Scholar
Gál, S., 1967. Die Methodik der Wasserdampf-Sorptionsmessungen. Berlin: Springer Verlag.CrossRefGoogle Scholar
Gábor, M., Pöppl, L., Izvekov, V., and Beyer, H. 1989 . Interaction of kaolinite with organic and inorganic alkali metal salts at 25–1300°C. Thermochim. Acta 148: 431438.CrossRefGoogle Scholar
Jackson, M. L., and Abdel-Kader, F. H. 1978 . Kaolinite intercalation procedure for all sizes and types with XRD spacing distinctive from other phyllosilicates. Clays & Clay Miner. 26: 8187.CrossRefGoogle Scholar
Juhász, Z., 1982. Adaption of thermal analysis for the study of water vapour adsorption isotherms. J. Thermal Anal. 25: 409422.CrossRefGoogle Scholar
Keller, W. D., and Haenni, R. P. 1978 . Effects of microsized mixtures of kaolin minerals on properties of kaolinites. Clays & Clay Miner. 26: 384396.CrossRefGoogle Scholar
Kristóf, J., Inczédy, J., Paulik, J., and Paulik, F. 1991 . Continuous and selective determination of water vapour evolved during thermal decomposition reactions. J. Thermal Anal. 37: 111120.CrossRefGoogle Scholar
Kristóf, J., and Inczédy, J. 1993 . Continuous determination of carbon dioxide evolved during thermal decomposition reactions. J. Thermal Anal. 40: 993998.CrossRefGoogle Scholar
Kristóf, J., Inczédy, J., and Mohácsi, G., 1990. Continuous determination of carbon monoxide evolved during thermal decomposition reactions. J. Thermal Anal. 36: 14011409.CrossRefGoogle Scholar
Lagaly, G., 1984. Clay organic interactions. Phil. Trans. R. Soc. Lond. A 311: 315332.Google Scholar
Ledoux, R. L., and White, J. L. 1964 . Infrared study of the OH groups in expanded kaolinite. Science 143: 244246.CrossRefGoogle ScholarPubMed
Range, K. J., Range, A., and Weiss, A. 1969 . Fire clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf., Tokyo, 1969, 1, Jerusalem: Israel University Press, 313.Google Scholar
Theng, B. K. G., Churchman, G. I., Whitton, I. S., and Claridge, G. G. C. 1984 . Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays & Clay Miner. 32: 249258.CrossRefGoogle Scholar
Thompson, J. G., 1985. Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates. Clays & Clay Miner. 33: 173180.CrossRefGoogle Scholar
van Olphen, H., 1963. An Introduction to Clay Colloid Chemistry, 2nd Ed. New York: John Wiley & Sons, 316 pp.Google Scholar
Weiss, A., Thielepape, W., Göring, R., Ritter, W., and Schafer, H. . Kaolinit-Einlagerungs-Verbindungen. Proc. Int. Clay Conf. Stockholm, I, Th. Rosenqvist and Graff-Peterson, P., 1963a eds. Oxford: Pergamon Press, 287305.Google Scholar
Weiss, A., Thielepape, W., and Orth, H. 1966 . Intercalation into kaolinite minerals. Proc. Int. Clay Conf. Jerusalem I, Jerusalem: Israel University Press, 277293.Google Scholar
Weiss, A., Thielepape, W., Ritter, W., Schafer, H., and Göring, G. 1963b . Zur Kenntnis von Hydrazin-Kaolinit. Z. Anorg. Allg. Chem. 320: 183204.CrossRefGoogle Scholar
Wiewiora, A., and Brindley, G. W. 1969 . Potassium acetate intercalation in kaolinite and its removal: Effect of material characteristics. Proc. Int. Clay Conf., Tokyo 1: 723733.Google Scholar