Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-02T12:44:05.842Z Has data issue: false hasContentIssue false

Synthesis of Magnetic Fe3O4 Nanorings for BSA Protein Adsorption

Published online by Cambridge University Press:  01 January 2024

Xiaonan Liu*
Affiliation:
State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, People's Republic of China
Youkui Zhang
Affiliation:
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
Liang Bian
Affiliation:
Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
Jinshan Li*
Affiliation:
Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, People's Republic of China
*
*E-mail address of corresponding author: liuxiaonan@swust.edu.cn
*E-mail address of corresponding author: ljs915@263.net

Abstract

The adsorption of bovine serum albumin (BSA) protein is important for protein research but remains a great challenge. Here, the hydrothermal method and calcination in a hydrogen-argon mixed atmosphere were used to obtain ordered mono-crystalline magnetic Fe3O4 nanorings with controllable size and uniform structure, which were applied to the adsorption of BSA protein. The results showed that the magnetic Fe3O4 nanorings prepared have the advantages of good crystallinity, controllable morphology, and excellent magnetic response. The Fe3O4 nanorings had an outer diameter of ~160–180 nm, inner diameter of ~80–110 nm, and height of 70 to ~110 nm. The amount of BSA adsorbed by magnetic Fe3O4 nanorings increased with increasing protein concentration; when the concentration of BSA was ~2.75 mg·mL-1 the adsorption amount approached saturation. When the pH value of the solution was ~5, the Fe3O4 nanorings absorption of BSA was greatest. With increasing adsorption time, the amount adsorbed increased gradually. Adsorption equilibrium was reached after 3 h. According to the formula, the saturated adsorption capacity of BSA per gram of magnetic Fe3O4 nanorings was 325.2 mg.

Graphical Abstract

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018.

References

An, N. Zhou, C. H. Zhuang, X. Y. Tong, D. S. Yu, W. H., Immobilization of enzymes on clay minerals for biocatalysts and biosensors Applied Clay Science 2015 114 283296 10.1016/j.clay.2015.05.029.CrossRefGoogle Scholar
Anirudhan, T. S. Rejeena, S. R. Tharun, A. R., Preparation, characterization and adsorption behavior of tannin-modified poly (glycidylmethacrylate) grafted zirconium oxide-densified cellulose for the selective separation of bovine serum albumin Colloid Surface B 2012 93 4958 10.1016/j.colsurfb.2011.12.010.CrossRefGoogle ScholarPubMed
Chen, L. Zhou, C. H. Fiore, S. Tong, D. S. Zhang, H. Li, C. S. Ji, S. F. Yu, W. H., Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications Applied Clay Science 2016 127-128 143163 10.1016/j.clay.2016.04.009.CrossRefGoogle Scholar
Chen, P., Chen, T., Xie, Q., Xu, L., Liu, H., & Zhou, Y. (2018). Mineralogy and geochemistry of limonite as a weathering product of ilvaite in the Yeshan iron deposit, Tongling, China. Clays and Clay Minerals, 66(2), 190207.CrossRefGoogle Scholar
Cortina, M. E. Melli, L. J. Roberti, M. Mass, M. Longinotti, G. Tropea, S., Electrochemical magnetic microbeads-based biosensor for point-of-care serodiagnosis of infectious diseases Biosensors & Bioelectronics 2016 80 2433 10.1016/j.bios.2016.01.021.CrossRefGoogle ScholarPubMed
Fuchino, S. Furuse, M. Agatsuma, K. Kamioka, Y. Iitsuka, T. Nakamura, S., Development of superconducting high gradient magnetic separation system for medical protein separation Ieee Transactions on Applied Superconductivity 2014 24 14 10.1109/TASC.2013.2281020.CrossRefGoogle Scholar
Galović, O. Samardžić, M. Sak-Bosnar, M., A new microsensor for the determination of anionic surfactants in commercial products International Journal of Electrochemical Science 2015 10 51765193.CrossRefGoogle Scholar
Goiriena-Goikoetxea, M. Guslienko, K. Y. Rouco, M. Orue, I. Berganza, E. Jaafar, M., Magnetization reversal in circular vortex dots of small radius Nanoscale 2017 9 11269 10.1039/C7NR02389H.CrossRefGoogle ScholarPubMed
Kamioka, Y., Agatsuma, K., Kajikawa, K., Ueda, H., Furuse, M., & Fuchino, S. (2014). Medical protein separation system using high gradient magnetic separation by superconducting magnet. Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. AIP Publishing, 1573, 11291134.Google Scholar
Khare, N., Eggleston, C. M., & Lovelace, D. M. (2005). Sorption and direct electrochemistry of mitochondrial cytochrome C on hematite surfaces. Clays and Clay Minerals, 53(6), 564571.CrossRefGoogle Scholar
Liu, X. L. Yang, Y. Ng, C. T. Zhao, L. Y. Zhang, Y. Bay, B. H., Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors Advanced Materials 2015 27 19391944 10.1002/adma.201405036.CrossRefGoogle ScholarPubMed
Liu, X. Yin, G. Yi, Z. Duan, T., Silk fiber as the support and reductant for the facile synthesis of Ag-Fe3O4 nanocomposites and its antibacterial properties Materials 2016 9 501509 10.3390/ma9070501.CrossRefGoogle ScholarPubMed
Liu, X. Zhu, F. H. Wang, W., Synthesis of single-crystalline iron oxide magnetic nanorings as electrochemical biosensor for dopamine detection International Journal of Electrochemical Science 2016 11 96969703 10.20964/2016.11.62.CrossRefGoogle Scholar
Magro, M. Baratella, D. Pianca, N. Toninello, A. Grancara, S. Zboril, R., Electrochemical determination of hydrogen peroxide production by isolated mitochondria: A novel nanocomposite carbon-maghemite nanoparticle electrode Sensors and Actuators B: Chemical 2013 176 315322 10.1016/j.snb.2012.09.044.CrossRefGoogle Scholar
Marin, T. Montoya, P. Arnache, O. Calderon, J. A., Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method Journal of Physical Chemistry B 2016 120 66346645 10.1021/acs.jpcb.6b01796.CrossRefGoogle ScholarPubMed
Nosrati, H. Sefidi, N. Sharafi, A. Danafar, H. Kheiri, M. H., Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug Bioorganic Chemistry 2018 76 501509 10.1016/j.bioorg.2017.12.033.CrossRefGoogle ScholarPubMed
Pankhurst, Q. A. Connolly, J. Jones, S. K. Dobson, J., Applications of magnetic nanoparticles in biomedicine Journal of Physics D: Applied Physics 2003 36 R167RR81 10.1088/0022-3727/36/13/201.CrossRefGoogle Scholar
Ravikumar, R. Chen, L. H. Jayaraman, P. Poh, C. L. Chan, C. C., Chitosan-nickel film based interferometric optical fiber sensor for label-free detection of histidine tagged proteins Biosensors & Bioelectronics 2017 99 578585 10.1016/j.bios.2017.08.012.CrossRefGoogle ScholarPubMed
Roh, Y. Zhang, C. L. Vali, H. Lauf, R. J. Zhou, J. Phelps, T. J., Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation Clays and Clay Minerals 2003 51 1 8395 10.1346/CCMN.2003.510110.CrossRefGoogle Scholar
Sharafeldin, M. Bishop, G. W. Bhakta, S. El-Sawy, A. Suib, S. L. Rusling, J. F., Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins Biosensors & Bioelectronics 2017 91 359366 10.1016/j.bios.2016.12.052.CrossRefGoogle ScholarPubMed
Sheng, A. Liu, F. Xie, N. Liu, J., Impact of proteins on aggregation kinetics and adsorption ability of hematite nanoparticles in aqueous dispersions Environmental Science & Technology 2016 50 22282235 10.1021/acs.est.5b05298.CrossRefGoogle ScholarPubMed
Simard, J. R. Zunszain, P. A. Ha, C. E. Yang, J. S. Bhagavan, N. V. Petitpas, I., Locating high-affinity fatty acid-binding sites on albumin by X-ray crystallography and NMR spectroscopy Proceedings of the National Academy of Sciences USA 2005 102 1795817963 10.1073/pnas.0506440102.CrossRefGoogle ScholarPubMed
Sleutels, THJA TerHeijne, A. Buisman, CJN Hamelers, HVM, Bioelectrochemical systems: an outlook for practical applications Chemsuschem 2012 5 10121019 10.1002/cssc.201100732.CrossRefGoogle ScholarPubMed
Takahashi, M. Akiyama, Y. Ikezumi, J. Nagata, T. Yoshino, T. Iizuka, A., Magnetic separation of melanoma-specific cytotoxic T lymphocytes from a vaccinated melanoma patient's blood using MHC/Peptide complex-conjugated bacterial magnetic particles Bioconjugate Chemistry 2009 20 304309 10.1021/bc800398d.CrossRefGoogle ScholarPubMed
Turner, A. P., Biosensors: sense and sensibility Chemical Society Reviews 2013 42 31843196 10.1039/c3cs35528d.CrossRefGoogle ScholarPubMed
Vigo-Cotrina, H. Guimarães, A. P., Writing and storing information in an array of magnetic vortex nanodisks using their azimuthal modes Journal of Magnetism & Magnetic Materials 2018 460 C 160164 10.1016/j.jmmm.2018.03.064.CrossRefGoogle Scholar
Wei, W. Ma, P. Dong, H. Krause, H. J. Zhang, Y. Willbold, D., A magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field Biosensors & Bioelectronics 2016 80 661665 10.1016/j.bios.2016.02.037.Google Scholar
Yang, Q. Zhu, Y. Yang, M. Ma, S. Wu, Y. Lan, F., Ligand-free Fe3O4/CMCS nanoclusters with negative charges for efficient structure selective protein adsorption Small 2016 12 23442353 10.1002/smll.201600022.CrossRefGoogle Scholar
Yu, W. H. Li, N. Tong, D. S. Zhou, C. H. Lin, C. X. Xu, C. Y., Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review Applied Clay Science 2013 80-81 443452 10.1016/j.clay.2013.06.003.CrossRefGoogle Scholar
Zhu, C. H. Shen, H. B. Xu, R. Y. Wang, H. Y. Han, J. M., Adsorption of bovine serum albumin onto magnetic chitosan microspheres Acta Physico-Chimica Sinica 2007 23 15831588 10.1016/S1872-1508(07)60079-5.Google Scholar
Zhou, C. H. Keeling, J., Fundamental and applied research on clay minerals: From climate and environment to nanotechnology Applied Clay Science 2013 74 39 10.1016/j.clay.2013.02.013.CrossRefGoogle Scholar
Zhou, C. H. Zhao, L. Z. Wang, A. Q. Chen, T. H. He, H. P., Current fundamental and applied research into clay minerals in China Applied Clay Science 2016 119 37 10.1016/j.clay.2015.07.043.CrossRefGoogle Scholar