Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T16:48:46.668Z Has data issue: false hasContentIssue false

Synthesis and Evaluation of Betaine Copolymer Filtrate Reducer for Drilling Mud

Published online by Cambridge University Press:  01 January 2024

Luo Yunxiang
Affiliation:
School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Lin Ling*
Affiliation:
School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Yu Wenke
Affiliation:
School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Li Xin
Affiliation:
Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Gu Han
Affiliation:
School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China

Abstract

High temperature and a large salt content weaken the surface hydration ability of clay particles in drilling fluid, reduce zeta potential, agglomerate clay particles, increase particle size, and destroy the stability of drilling mud. A filtrate reducer is required, therefore, to maintain the zeta potential of the clay, prevent the agglomeration of clay particles, and maintain good performance of the drilling mud at high temperature and high salt content. To prepare temperature- and salt-resistant polymer filtrate reducer, a betaine monomer was synthesized and copolymerized with a conventional monomer. A betaine monomer 3-(dimethyl (4-vinyl benzyl) ammonia) propyl sulfonate (DVBAPS) was synthesized and then used to create a copolymer filtrate reducer. The copolymer filtrate reducer, referred to as PAAAND, was prepared by free radical copolymerization with 2-acrylamide-2-methylpropane sulfonic acid, acrylic acid, N-vinyl pyrrolidone, acrylamide, and DVBAPS. The optimum synthesis conditions were determined by single factor evaluation, and the chemical structure of the PAAAND was confirmed by Fourier-transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Results from particle-size distribution and zeta-potential measurements showed that PAAAND increased the zeta potential of clay particles and the distribution width of particles size, which served to maintain the stability of the drilling mud under high-temperature and high-salt conditions. The results of scanning electron microscopy showed that PAAAND made the filter cake formed by clay particles smoother and denser, which reduced filtration loss. The reduction in filtrate loss continued even after aging at high temperature, and, thus, PAAAND performed better than commercial products.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Jdayil, B., & Ghannam, M. (2014). The Modification of Rheological Properties of Sodium Bentonite-water Dispersions with Low Viscosity CMC Polymer Effect. Energy Sources Part a-Recovery Utilization and Environmental Effects, 36(10), 10371048. https://doi.org/10.1080/15567036.2010.551260CrossRefGoogle Scholar
Chang, X., Sun, J., Zhang, F., Lv, K., Zhou, X., Wang, J., & Zhao, J. (2020). A novel zwitterionic quaternary copolymer as a fluid-loss additive for water-based drilling fluids. Energy Sources Part A: Recovery Utilization and Environmental Effects, 1–14. https://doi.org/10.1080/15567036.2020.1766600CrossRefGoogle Scholar
Dai, Z. W., Sun, J. S., Wang, Y., & Iop, . (2019). A Polymer-based Drilling Fluid with High Temperature, Salt and Calcium Resistance Property. In 4th International Conference on Advances in Energy Resources and Environment Engineering (Vol. 237). https://doi.org/10.1088/1755-1315/237/5/052058Google Scholar
De Monaco Lopes, B., Lessa, V. L., Silva, B. M., Carvalho Filho, M. A. D. S., Schnitzler, E., & Lacerda, L. G. (2015). Xanthan gum: properties, production conditions, quality and economic perspective. Journal of Food and Nutrition Research (Bratislava, Slovakia), 54(3), 185194.Google Scholar
Gurkaynak, A., Tubert, F., Yang, J., Matyas, J., Spencer, J. L., & Gryte, C. C. (1996). High-temperature degradation of poly(-acrylic acid) in aqueous solution. Journal of Polymer Science, Part A: Polymer Chemistry, 34(3), 349355. https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<349::AID-POLA3>3.0.CO;2-P3.0.CO;2-P>CrossRefGoogle Scholar
Hasan, M. L., Abidin, N. A. Z., & Singh, A. (2018). The rheological performance of guar gum and castor oil as additives in water-based drilling fluid. Materials Today-Proceedings, 5(10), 2181021817.10.1016/j.matpr.2018.07.036CrossRefGoogle Scholar
Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces, B: Biointerfaces, 14(1-4), 105119. https://doi.org/10.1016/S0927-7765(99)00029-6CrossRefGoogle Scholar
Lee, W.-F., & Tsai, C.-C. (1994). Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers: 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear magnetic resonance spectra. Polymer, 35(10), 22102217. https://doi.org/10.1016/0032-3861(94)90253-4CrossRefGoogle Scholar
Li, H.-M., Zhuang, J., Liu, H.-B., Feng, L., & Dong, W. (2012). Preparation and property of 2-acrylamide-2-methylpropanesulfonic acid/acrylamide/sodium styrene sulfonate as fluid loss agent for oil well cement. Polymer Engineering & Science, 52(2), 431437. https://doi.org/10.1002/pen.22101CrossRefGoogle Scholar
Li, Z., Pu, X., Tao, H., Liu, L., & Su, J. (2014). Synthesis and properties of acrylamide 2-acrylamido-2-methypropane sulfonic acid sodium styrene sulfonate N-vinyl pyrrolidone quadripolymer and its reduction of drilling fluid filtration at high temperature and high salinity. Journal of Polymer Engineering, 34(2), 125131. https://doi.org/10.1515/polyeng-2013-0257CrossRefGoogle Scholar
Liaw, D. J., & Lin, M. C. (1990). Aqueous solution properties of an ampholytic poly[3-dimethyl(acryloyloxyethyl) ammonium propane sulfonate]. Journal of the Chinese Institute of Chemical Engineers, 21(1), 1320.Google Scholar
Lin, L., & Luo, P. (2015). Amphoteric hydrolyzed poly(acrylamide/dimethyl diallyl ammonium chloride) as a filtration reducer under high temperatures and high salinities. Journal of Applied Polymer Science, 132(10). https://doi.org/10.1002/app.41581CrossRefGoogle Scholar
Lin, M., Li, M., Wang, Z., & Wu, Z. (2009). A Study of Thermal Stability of Linked Polymer Solution. Journal of Dispersion Science and Technology, 30(6), 753756. https://doi.org/10.1080/01932690802643154CrossRefGoogle Scholar
Liu, L., Pu, X., Tao, H., Deng, Q., & Luo, A. (2018). Synthesis and characterization of comb-shaped copolymer as a filtration reducer and comparison with counterparts. RSC Advances, 8(21), 1142411435. https://doi.org/10.1039/c7ra13255gCrossRefGoogle ScholarPubMed
Liu, F., Zhang, Z., Wang, Z., Dai, X., Chen, M., & Zhang, J. (2019). Novel lignosulfonate/N, N-dimethylacrylamide/γ-methacryloxypropyl trimethoxy silane graft copolymer as a filtration reducer for water-based drilling fluids. Journal of Applied Polymer Science, 137(2). https://doi.org/10.1002/app.48274Google Scholar
Liu, K., Du, H. S., Zheng, T., Liu, H. Y., Zhang, M., Zhang, R., Li, H. M., Xie, H. X., Zhang, X. Y., Ma, M. G., & Si, C. L. (2021). Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 259, Article 117740. https://doi.org/10.1016/j.carbpol.2021.117740CrossRefGoogle ScholarPubMed
Ma, X., Zhu, Z., Shi, W., & Hu, Y. (2016). Synthesis and application of a novel betaine-type copolymer as fluid loss additive for water-based drilling fluid. Colloid and Polymer Science, 295(1), 5366. https://doi.org/10.1007/s00396-016-3980-xCrossRefGoogle Scholar
Mao, H., Qiu, Z., Shen, Z., & Huang, W. (2015). Hydrophobic associated polymer based silica nanoparticles composite with core–shell structure as a filtrate reducer for drilling fluid at utra-high temperature. Journal of Petroleum Science and Engineering, 129, 114. https://doi.org/10.1016/j.petrol.2015.03.003CrossRefGoogle Scholar
Mao, H., Wang, W., Ma, Y., & Huang, Y. (2020). Synthesis, characterization and properties of an anionic polymer for water-based drilling fluid as an anti-high temperature and anti-salt contamination fluid loss control additive. Polymer Bulletin, 78, 24832503. https://doi:org/10.1007/s00289-020-03227-yCrossRefGoogle Scholar
Murodov, M. M., Rahmanberdiev, G. R., Khalikov, M. M., Egamberdiev, E. A., Negmatova, K. C., Saidov, M. M., & Mahmudova, N. (2012). Endurance of High Molecular Weight Carboxymethyl Cellulose in Corrosive Environments. In Damore, A., Grassia, L., & Acierno, D. (Eds.), 6th International Conference on Times of Polymers (Vol. 1459, pp. 309311). https://doi.org/10.1063/1.4738479Google Scholar
Pashley, R. M., & Israelachvili, J. N. (1984). DLVO and hydration forces between mica surfaces in magnesium(2+), calcium(2+), strontium(2+), and barium(2+) chloride solutions. Journal of Colloid and Interface Science, 97(2), 446455. https://doi.org/10.1016/0021-9797(84)90316-3CrossRefGoogle Scholar
Perricone, A. C., Enright, D. P., & Lucas, J. M. (1986). Vinyl Sulfonate Copolymers for High-Temperature Filtration Control of Water-Based Muds. SPE Drilling Engineering, 1(05), 358364. https://doi.org/10.2118/13455-paCrossRefGoogle Scholar
Roux, F. X., Audebert, R., & Quivoron, C. (1973). Pyrolysis of acrylic and methylacrylic acid polymers at moderate temperatures. European Polymer Journal, 9(8), 815825.10.1016/0014-3057(73)90014-1CrossRefGoogle Scholar
Sharma, G., Sharma, S., Kumar, A., Al-Muhtaseb, A. H., Naushad, M., Ghfar, A. A., Mola, G. T., & Stadler, F. J. (2018). Guar gum and its composites as potential materials for diverse applications: A review. Carbohydrate Polymers, 199, 534545. https://doi.org/10.1016/j.carbpol.2018.07.053CrossRefGoogle ScholarPubMed
Shen, H. K., Lv, K. H., Huang, X. B., Liu, J. P., Bai, Y. R., Wang, J. T., & Sun, J. S. (2020). Hydrophobic-associated polymer-based laponite nanolayered silicate composite as filtrate reducer for water-based drilling fluid at high temperature. Journal of Applied Polymer Science, 137(18), Article 48608. https://doi.org/10.1002/app.48608CrossRefGoogle Scholar
Smith, P. S., Browne, S. V., Heinz, T. J., & Wise, W. V. (1996). Drilling Fluid Design to Prevent Formation Damage in High Permeability Quartz Arenite Sandstones. SPE Annual Technical Conference and Exhibition.10.2118/36430-MSCrossRefGoogle Scholar
Tang, X., Yuan, B., Yang, Y. G., & Xie, Y. Q. (2016). Preparation and performance of AMPS/AA/DMAA/SA copolymer as a filtrate reducer for oil well cementing. Journal of Applied Polymer Science, 133(33), Article 43824. https://doi.org/10.1002/app.43824CrossRefGoogle Scholar
Wang, G., Fan, H., Jiang, G., Li, W., Ye, Y., Liu, J., Kong, X., Zhong, Z., & Qian, F. (2020). Rheology and fluid loss of a polyacrylamide-based micro-gel particles in a water-based drilling fluid. Materials Express, 10(5), 657662. https://doi.org/10.1166/mex.2020.1687CrossRefGoogle Scholar
Xiao, S., Zhang, Y., Shen, M., Chen, F., Fan, P., Zhong, M., Ren, B., Yang, J., & Zheng, J. (2018). Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir, 34(1), 97105. https://doi.org/10.1021/acs.langmuir.7b03667CrossRefGoogle ScholarPubMed
Xiong, B., Loss, R. D., Shields, D., Pawlik, T., Hochreiter, R., Zydney, A. L., & Kumar, M. (2018). Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water, 1(1), 19. https://doi.org/10.1038/s41545-018-0016-8CrossRefGoogle Scholar
Xiping, M., Zhongxiang, Z., Daiyong, H., & Wei, S. (2017). Synthesis and performance evaluation of a water-soluble copolymer as high-performance fluid loss additive for water-based drilling fluid at high temperature. Russian Journal of Applied Chemistry, 89(10), 16941705. https://doi.org/10.1134/s1070427216100190CrossRefGoogle Scholar
Yang, M.-H. (1998). The two-stages thermal degradation of poly-acrylamide. Polymer Testing, 17(3), 191198. https://doi.org/10.1016/S0142-9418(97)00036-6CrossRefGoogle Scholar
Yang, P., Li, T. B., Wu, M. H., Zhu, X. W., & Sun, X. Q. (2015). Analysis of the effect of polyanionic cellulose on viscosity and filtrate volume in drilling fluid. Materials Research Innovations, 19, 1216. https://doi.org/10.1179/1432891715z.0000000001329CrossRefGoogle Scholar
Yuan, J., Zhang, D., He, X., Ni, Y., Che, L., Wu, J., Wu, B., Wang, Y., Wang, S., Sha, D., Zheng, S. Y., & Yang, J. (2021). Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing. International Journal of Biological Macromolecules, 190, 754762. https://doi.org/10.1016/j.ijbiomac.2021.09.019CrossRefGoogle ScholarPubMed
Zheng, X. H., Yang, S. W., & Lei, Z. L. (2013). Synthesis, Characterization, and Evaluation of a Fluid Loss Agent for High-Temperature Drilling Fluid. American Laboratory, 45(10), 2225.Google Scholar
Zheng, W. L., Wu, X. M., & Huang, Y. M. (2020). Impact of polymer addition, electrolyte, clay and antioxidant on rheological properties of polymer fluid at high temperature and high pressure. Journal of Petroleum Exploration and Production Technology, 10(2), 663671. https://doi.org/10.1007/s13202-019-0732-8CrossRefGoogle Scholar
Zheng, S. Y., Mao, S., Yuan, J., Wang, S., He, X., Zhang, X., Du, C., Zhang, D., Wu, Z. L., & Yang, J. (2021). Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chemistry of Materials, 33(21), 84188429. https://doi.org/10.1021/acs.chemmater.1c02781CrossRefGoogle Scholar
Zhao, Z., Pu, X., Xiao, L., Wang, G., Su, J., & He, M. (2015). Synthesis and properties of high temperature resistant and salt tolerant filtrate reducer N,N-dimethylacrylamide 2-acrylamido-2-methyl-1-propyl dimethyl diallyl ammonium chloride N-vinylpyrrolidone quadripolymer. Journal of Polymer Engineering, 35(7), 627635. doi: 10.1515/polyeng-2014-0260CrossRefGoogle Scholar