Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T14:00:13.407Z Has data issue: false hasContentIssue false

Synthesis and CO2 Adsorption Features of a Hydrotalcite-Like Compound of the Mg2+-Al3+-Fe(CN)64- System with High Layer-Charge Density

Published online by Cambridge University Press:  28 February 2024

Gang Mao
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Masamichi Tsuji
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Yutaka Tamaura
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan

Abstract

Hydrotalcite-like compounds (HT) with 24%–48% Al3+-substitution have been synthesized in the Mg2+-Al3+-Fe(CN)64- system. Conditioning of the synthesized and air-dried compound with K4Fe(CN)64- solution at 80°C was essential to obtain the 80%–90% pure ionic Fe(CN)64- form on an equivalent basis. A linear decrease in ao with an increase in the mole ratio of R = Al3+/(Mg2+ + Al3+) was extended to R = 0.48. The formation of highly Al3+-substituted HTs has been corroborated by the decrease in the hexagonal lattice constant ao down to 3.016 Å. The ao value was independent of the interlayer anions. The CO2 adsorption profiles were dependent upon both the Al3+-substitution and the interlayer distance. The isosteric heat of CO2 adsorption was 43.3 kJ mol-1 in the range of adsorption of 20 to 40 cm3 g-1 at 298 K and 0.1 MPa.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R., 1968 The crystal structure of pyroaurite Acta Crystallogr. B24 972977 10.1107/S0567740868003511.CrossRefGoogle Scholar
Bish, L. and Brindley, G. W., 1977 A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group Amer. Mineral. 62 458464.Google Scholar
Brindley, G. W. and Kikkawa, S., 1979 A crystal-chemical study of Mg, Al, and Ni, Al hydroxy-perchlorates and hydroxy-carbonates Amer. Mineral. 64 836843.Google Scholar
Clearfield, A., 1988 Role of ion exchange in solid-state chemistry Chem. Rev. 88 125148 10.1021/cr00083a007.CrossRefGoogle Scholar
Evans, J. V. and Whateley, T. L., 1967 Infrared study of adsorption of carbon dioxide and water on magnesium oxide Trans. Faraday Soc. 63 27692777 10.1039/tf9676302769.CrossRefGoogle Scholar
Gastuche, M. C., Brown, G. and Mortand, M. M., 1967 Mixed magnesium-aluminum hydroxides Clay Miner. 7 177192 10.1180/claymin.1967.007.2.05.CrossRefGoogle Scholar
Idemura, S., Suzuki, E. and Ono, Y., 1989 Electronic state of iron complexes in the interlayer of hydrotalcite-like materials Clays & Clay Minerals 37 553557 10.1346/CCMN.1989.0370608.CrossRefGoogle Scholar
Ito, W. and Shimizhu, H., 1993 Recovery of carbon dioxide by adsorbents Handbook of Adsorption Technology Tokyo NTS Ltd. 761765.Google Scholar
Kikkawa, S. and Koizumi, M., 1982 Ferrocyanide anion bearing Mg, Al hydroxide Mater. Res. Bull. 17 191198 10.1016/0025-5408(82)90145-3.CrossRefGoogle Scholar
Komarneni, S. and Tsuji, M., 1989 Selective cation exchange in substituted tobermorites J. Am. Ceram. Soc. 72 16681674 10.1111/j.1151-2916.1989.tb06301.x.CrossRefGoogle Scholar
Miyata, S., 1975 The synthesis of hydrotalcite-like compounds and their structure and physico-chemical proper-ties-I: The systems Mg2+-Al3+-NO3−, Mg2+-Al3+-Cl, Mg2+-Al3+-CIO4 , Ni2+-Al3+-Cl and Zn2+-Al3+-Cl Clays & Clay Minerals 23 369375 10.1346/CCMN.1975.0230508.CrossRefGoogle Scholar
Miyata, S., 1980 Physico-chemical properties of synthesis of new hydrotalcites in relation to composition Clays & Clay Minerals 28 5056 10.1346/CCMN.1980.0280107.CrossRefGoogle Scholar
Miyata, S., 1983 Anion-exchange properties of hydrotalcite-like compounds Clays & Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Miyata, S. and Hirose, T., 1978 Adsorption of N2, O2, CO2 and H2 on hydrotalcite-like system: Mg2+-Al3+-Fe(CN)6 4− Clays & Clay Minerals 26 441447 10.1346/CCMN.1978.0260608.CrossRefGoogle Scholar
Nakamoto, K., 1986 Infrared and Raman Spectra of Inorganic and Coordination Compounds 4 New York John Wiley & Sons 106124.Google Scholar
Nishizawa, K., Kodama, T., Tabata, M., Yoshida, T., Tsuji, M. and Tamaura, Y., 1992 Adsorption of CO2 on oxygen-deficient magnetite: Adsorption enthalpy and adsorption isotherm J. Chem. Soc. Faraday Trans. 88 27712773 10.1039/ft9928802771.CrossRefGoogle Scholar
Pausch, I., Lohse, H. H., Schurmann, K. and Allmann, R., 1986 Synthesis of disordered and Al-rich hydrotalcite-like compounds Clays & Clay Minerals 34 507510 10.1346/CCMN.1986.0340502.CrossRefGoogle Scholar
Ruthven, D. M., 1984 Thermodynamics of adsorption Principles of Adsorption & Adsorption Process New York John Wiley & Sons 6264.Google Scholar
Sazarashi, M., Takeshita, K., Kumagai, M., Tamura, T. and Takashima, Y., 1992 Recovery of nitrogen oxides as nitric acid by mineral zeolite J. At. Energy Soc. Jpn. 34 529534 10.3327/jaesj.34.529.CrossRefGoogle Scholar
Shannon, R. D., 1976 Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chalcogenides Acta Crystallogr. A32 751946 10.1107/S0567739476001551.CrossRefGoogle Scholar
Sissoko, I., Iyagba, E. T., Sahai, R. and Biloen, P., 1985 Anion intercalation and exchange in Al(OH)3-derived compounds J. Solid State Chem. 60 283288 10.1016/0022-4596(85)90278-6.CrossRefGoogle Scholar
Taylor, H. F. W., 1973 Crystal structure of some double hydroxide minerals Mineral. Mag. 39 377389 10.1180/minmag.1973.039.304.01.CrossRefGoogle Scholar
Thevenot, F., Szymanski, R. and Chaumette, P., 1989 Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds Clays & Clay Minerals 37 396402 10.1346/CCMN.1989.0370502.CrossRefGoogle Scholar
Tsuji, M. and Komarneni, S., 1989 Alkali metal ion exchange selectivity of Al-substituted tobermorite J. Mater. Res. 4 698703 10.1557/JMR.1989.0698.CrossRefGoogle Scholar
Tsuji, M., Komarneni, S. and Malla, P., 1991 Substituted tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies J. Am. Ceram. Soc. 74 274279 10.1111/j.1151-2916.1991.tb06874.x.CrossRefGoogle Scholar
Tsuji, M., Mao, G. and Tamaura, Y., 1992 On the thermodynamic treatment for anion exchange in hydrotalcite-like compounds Clays & Clay Minerals 40 742743 10.1346/CCMN.1992.0400614.CrossRefGoogle Scholar
Tsuji, M., Mao, G. and Tamaura, Y., 1993a Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors J. Mater. Res. 8 11371142 10.1557/JMR.1993.1137.CrossRefGoogle Scholar
Tsuji, M., Tabata, M., and Tamaura, Y., (1993b) CO2 decomposition by oxide ceramics intercalated in layer compound: J. Am. Ceram. Soc. (in press).CrossRefGoogle Scholar
Wilson, A. J. C., 1951 Structure Reports 11 42.Google Scholar
Wykoff, R. W. G., 1963 Crystal Structure, Vol. 1 New York John Wiley and Sons 268.Google Scholar
Yamaoka, T., Abe, M. and Tsuji, M., 1989 Synthesis of Cu-Al hydrotalcite-like compound and its ion exchange property Mater. Res. Bull. 24 11831199 10.1016/0025-5408(89)90193-1.CrossRefGoogle Scholar