Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-17T15:22:32.627Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Zeolites in the System Na2O-K2O-Al2O3-SiO2-H2O

Published online by Cambridge University Press:  02 April 2024

Rona J. Donahoe*
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305
J. G. Liou
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305
Sandra Guldman
Affiliation:
Department of Geology and Geophysics, University of California Berkeley, Berkeley, California 94720
*
1Present address: Department of Geology, The University of Alabama, P.O. Box 1945, University, Alabama 35486.

Abstract

Zeolites having the structures of phillipsite, merlinoite, and gobbinsite were synthesized from clear solutions at 80°C in the system Na2O-K2O-Al2O3-SiO2-H2O and their morphologies, cell parameters, and compositions determined. At 3.5 M silica concentration, the formation of merlinoite (synthetic zeolite W) is favored over the formation of phillipsite (synthetic zeolite ZK-19) by solution conditions of high pH (> 13.6) and low Na/(Na + K) ratios (<0.5).

Using the information obtained from the synthesis experiments, the presence of merlinoite was predicted in sediments from Searles Lake, a saline, alkaline lake in California with ideal physiochemical conditions for its formation. Merlinoite was subsequently discovered to occur in tuffaceous sediments as part of an authigenic silicate zonation pattern from phillipsite → phillipsite + merlinoite → merlinoite → K-feldspar with increasing depth. Because of the close similarities in the physical properties of phillipsite and merlinoite, merlinoite may be much more common as an authigenic mineral than is currently realized.

Резюме

Резюме

Цеолиты, имеющие структуры филлипсита, мерлиноито и гоббинсито, синтезировались из чистых растворов при 80°С в системе Na2O-K2O-Al2O3-SiO2-H2O. Определялись морфологии, пара¬метры ячейки и состав этих материалов. При концентрации кремнезема равной 3,5 М, образование мерлиноита (синтетического цеолита W) происходило легче, чем образование филлипсита (синте¬тического цеолита ZK-19) в условиях раствора при высоком pH (> 13,6) и низких (<0,5) отнощениях Na/(Na + K).

Ha основании информации, полученной из экспериментов синтеза, предсказывалось присутствие мерлиноита в осадках из озера Сирлез, соленого, щелочного озера в Калифорнии, имеющего идеальные физико-химические условия для формирования мерлиноита. Впоследствии мерлиноит образовался в туфовых осадках как составляющая аутогенного порядкя кремнеземных зон с увели¬чивающейся глубиной: филлипсит → филлипсит + мерлиноит → мерлиноит - K-фельдшпат. В результате подобия физических свойств филлипсита и мерлиноита, мерлиноит может быть более общим аутогенным минералом, чем представлено в настоящие время. [E.G.]

Resümee

Resümee

Zeolithe mit den Strukturen von Phillipsit, Merlinoit, und Gobbinsit wurden aus klaren Lösungen bei 80°C im System Na2O-K2O-Al2O3-SiO2-H2O synthetisiert, und ihre Morphologie sowie ihre Zellparameter und ihre chemische Zusammensetzung bestimmt. Bei einer 3,5 m SiO2-Konzentration wird die Bildung von Merlinoit (synthetisch Zeolith W) im Vergleich zur Zildung von Phillipsit (synthetisch Zeolith ZK-19) bevorzugt, wenn der pH-Wert der Lösung hoch ist (>13,6) und die Na/(Na + K)-Verhältnisse niedrig sind (<0,5).

Aufgrund der aus den Syntheseexperimenten gewonnenen Ergebnisse wurde das Auftreten von Merlinoit in den Sedimenten vom Searles Lake, einem sahnen, alkalihaltigen See in Kalifornien, vorausgesagt, der ideale physikochemische Bedingungen für die Bildung von Merlinoit aufweist. Daraufhin zeigte sich, daß Merlinoit in tuffhaltigen Sedimenten als ein Teil einer authigenen zonaren Verteilung der Silikate auftritt und zwar mit zunehmender Tiefe: Phillipsit → Phillipsit + Merlinoit → Merlinoit → K-Feldspat. Wegen der sehr ähnlichen physikalischen Eigenschaften von Phillipsit und Merlinoit dürfte Merlinoit als authigenes Mineral weitaus verbreiteter sein als man bisher annimmt. [U.W.]

Résumé

Résumé

On a synthétisé des zéolites ayant les structures de la phillipsite, la merlinoite et la gobbinsite à partir de solutions claires à 80°C dans le système Na2O-K2O-Al2O3-SiO2-H2O et on a déterminé leurs morphologies, leurs paramètres de maille, et leurs compositions. A une concentration de silice de 3,5 M, la formation de merlinoite (zéolite synthétique W) est favorisée vis à vis de la formation de phillipsite (zéolite synthétique ZK-19) sous des conditions de solutions de pH élevé (>13,6) et des proportions Na/(Na + K) basses (<0,5).

En employant l'information obtenue des expériences de synthèse, on a prédit la présence de merlinoite dans des sédiments de Searles Lake, un lac salin, alkalin, en Californie avec des conditions physiochimiques idéales pour sa formation. On a subséquemment découvert que la merlinoite se trouvait dans des sédiments tulfacés en tant que partie d'une séquence de zone silicate authigénique de la phillipsite → phillipsite + merlinoite → merlinoite → feldspar K, en proportion avec la profondeur. A cause des similarités très proches des propriétés physiques de la phillipsite et de la merlinoite, la merlinoite pourrait être beaucoup plus commune en tant que minéral authigénique que l'on ne se rendait compte jusqu’à présent. [D. J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D., Evans, H., and Handwerker, D. (1972) Job 9214: indexing and least-squares refinement of powder diffraction data: U.S. Geol. Surv. Comp. Cont. 20, 26 pp.Google Scholar
Baerlocher, C.h. and Meier, W. M., 1972 The crystal structure of synthetic zeolite Na-P1, an isotype of gismondine Z. Kristallogr. 135 339354.CrossRefGoogle Scholar
Barrer, R. M. and Baynham, J. W., 1956 Hydrothermal chemistry of the silicates VII. Synthetic potassium aluminosilicates J. Chem. Soc. (London) 28822892.CrossRefGoogle Scholar
Barrer, R. M., Baynham, J. W., Bultitude, F. W. and Meier, W. M., 1959 Hydrothermal chemistry of the silicates. Part VIII. Low temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues J. Chem. Soc. (London) 195208.CrossRefGoogle Scholar
Barrer, R. M., Bultitude, F. W. and Kerr, I. S., 1959 Some properties of, and a structural scheme for, the harmotome zeolites J. Chem. Soc. (London) 15211528.CrossRefGoogle Scholar
Barrer, R. M. and Munday, B. M., 1971 Cation exchange reactions of a sedimentary phillipsite J. Chem. Soc. (London) 29042909.CrossRefGoogle Scholar
Bosmans, H. J., Tambuyzer, E., Paenhuys, J., Ylen, L., Vanduysen, J., Meier, W. M. and Uytterhoeven, J. B., 1973 Zeolite formation in the system K2O-Na2O-Al2O3-SiO2-H2O Molecular Sieves 179188.CrossRefGoogle Scholar
Breck, D. W., 1974 Zeolite Molecular Sieves New York Wiley.Google Scholar
Breck, D. W., Eversole, W. G. and Milton, R. M., 1956 New synthetic crystalline zeolites J. Amer. Chem. Soc. 78 23382339.CrossRefGoogle Scholar
Breck, D. W., Flanigen, E. M. and Barrer, R. M., 1968 Synthesis and properties of Union Carbide zeolites L, X, and Y Molecular Sieves London Society of Chemical Industry 4761.Google Scholar
Colella, C., Aiello, R. and DiLudovico, V., 1977 Synthesis of merlinoite Soc. Ital. Mineral. Petrol. 33 511518.Google Scholar
Dibble, W. E., dejong, B. H. W. S. and Cary, L. W., 1980 An 27 Al and 29Si pulsed NMR study on the mechanism of zeolite precipitation Proc. Symp. Water-Rock Interactions III, Edmonton, Alberta, July 1980 4748.Google Scholar
Galli, E. and Ghittoni, A. G., 1972 The crystal chemistry of phillipsites Amer. Mineral. 57 11251145.Google Scholar
Galli, E., Gottardi, G. and Pongiluppi, D., 1979 Thecrystal structure of the zeolite merlinoite Neues Jahrb. Mineral. Monatsh. 19.Google Scholar
Hay, R. L., 1964 Phillipsite of saline lakes and soils Amer. Mineral. 49 13661387.Google Scholar
Hay, R. L. (1966) Zeolites and zeolitic reactions in sedimentary rocks: Geol. Soc. Amer. Spec. Paper 85, 130 pp.Google Scholar
Hay, R. L. and Moiola, R. J., 1963 Authigenic silicate minerals in Searles Lake, California Sedimentology 2 312332.CrossRefGoogle Scholar
Khomyakov, A. P., Kurova, T. A. and Muravitskaya, T. N., 1981 Merlinoite: the first discovery in the U.S.S.R. Dokl. Akad. Nauk SSSR 256 172174.Google Scholar
Kühl, G. H. and Barrer, R. M., 1968 The influence of phosphate and other complexing agents on the crystallization of zeolites Molecular Sieves London Society of Chemical Industry 8591.Google Scholar
Kühl, G. H., 1969 Synthetic phillipsite Amer. Mineral. 54 16071612.Google Scholar
Kühl, G. H., Flanigen, E. M. and Sand, L. B., 1971 Crystallization of zeolites in the presence of a complexing agent Molecular Sieve Zeolites I. 6375.CrossRefGoogle Scholar
Livingstone, D. A. (1963) Chemical compositions of rivers and lakes: U.S. Geol. Surv. Prof. Pap. 440–G, 64 pp.Google Scholar
Milton, R. M., 1961 Crystalline zeolite U.S. Pat. .Google Scholar
Nawaz, R. and Malone, J. T., 1982 Gobbinsite, a new zeolite mineral from Co. Antrim, N. Ireland Mineral. Mag. 46 365369.CrossRefGoogle Scholar
Passaglia, E., Pongiluppi, D. and Rinaldi, R., 1977 Merlinoite, a new mineral of the zeolite group Neues Jahrb. Mineral. Monatsh. 355364.Google Scholar
Schwochow, F. E., Heinze, G. W., Flanigen, E. M. and Sand, L. B., 1971 Process of zeolite formation in the system Na2O-Al2O3-SiO2-H2O Molecular Sieve Zeolites I 102107.Google Scholar
Sherman, J. D. and Katzer, J. R., 1977 Identification and characterization of zeolites synthesized in the K2O-Al2O3-SiO2-H2O system Molecular Sieves II 3042.CrossRefGoogle Scholar
Shibue, Y., 1981 Cation-exchange reactions of siliceous and aluminous phillipsites Clays & Clay Minerals 29 397402.CrossRefGoogle Scholar
Smith, J. V. and Rinaldi, F., 1962 Framework structures formed from parallel four- and eight-membered rings Mineral. Mag. 33 202212.Google Scholar
Stonecipher, S. A., Sand, L. B. and Mumpton, F. A., 1978 Chemistry of deep-sea phillipsite, clinoptilolite, and host sediments Natural Zeolites: Occurrence, Properties, Use Elmsford, N.Y. Pergamon Press 221234.Google Scholar
Stumm, W. and Morgan, J., 1981 Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters 2nd ed. New York Wiley.Google Scholar
Taylor, A. M. and Roy, R., 1964 Zeolite studies IV: Na-P zeolites and the ion-exchanged derivatives of tetragonal NaP Amer. Mineral. 49 656682.Google Scholar
White, D. E., Hem, J. D., and Waring, G. A. (1963) Chemical composition of subsurface waters: U.S. Geol. Surv. Prof. Pap. 440–E, 67 pp.Google Scholar