Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T08:36:44.713Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Non-leaching Inorgano- and Organo-montmorillonites and their Bactericidal Properties Against Streptococcus Mutans

Published online by Cambridge University Press:  01 January 2024

Aslı Şahiner
Affiliation:
Science Faculty, Biology Department, Ege University, 35100, Bornova-İzmir, Turkey
Günseli Özdemir
Affiliation:
Engineering Faculty, Chemical Engineering Department, Ege University, 35100, Bornova-İzmir, Turkey
T. Hakan Bulut
Affiliation:
Dentistry Faculty, Orthodontics Department, Ege University, 35100, Bornova-İzmir, Turkey
Saadet Yapar*
Affiliation:
Engineering Faculty, Chemical Engineering Department, Ege University, 35100, Bornova-İzmir, Turkey

Abstract

The direct application of heavy metal- and quaternary ammonium-based antibacterial agents can cause inconvenience such as irritation, short-term applicability, discoloration of the tissue, and environmental concerns. The immobilization of these agents on montmorillonite (Mnt) was expected to diminish these effects by hindering direct contact of the ions with the target tissues. The objective of the present study was, therefore, to prepare inorgano(I)- and organo(O)-montmorillonites (I/O-Mnt) and to determine their potential uses in such biomedical applications. Na-montmorillonite (Mnt-Na) was modified by hydrothermal and microwave irradiation methods using Cu2+/Zn2+, and quaternary ammonium and/or anionic surfactants. The effect of the structures formed by immobilization on Mnt surfaces on antibacterial activity was investigated. Quaternary ammonium surfactants were cetyltrimethyl ammonium bromide (CTAB) with a linear alkyl chain, cetylpyridinium chloride (CPC) with a single aromatic ring, and benzethonium chloride (BZT) with double aromatic rings. N-lauroyl sarcosinate (SR) was the anionic surfactant. The samples were subjected to thermogravimetric (TGA) and scanning electron microscopy (SEM) analyses. Desorption tests showed that the antibacterial efficacy against Streptococcus mutans stemmed from I/O-Mnt and not from the ions released from the material surfaces to the aqueous phase. The results of the antibacterial studies showed that the existence of a linear alkyl chain and a double aromatic ring were the structural factors causing the greatest antibacterial effect. The time-kill tests revealed that Mnt-CTA, Mnt-BZT, and Mnt-CP-SR were effective against Streptococcus mutans within 5 min of contact. With the new findings, they were identified as possible selective and potent bactericidal agents and promising candidates for biomedical applications.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM E2149-13a Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions (2013). ASTM International. West Conshohocken, Pennsylvania, USA.Google Scholar
Atia, A. A. (2008). Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied Clay Science, 41, 7384. https://doi.org/10.1016/j.clay.2007.09.011CrossRefGoogle Scholar
Bernardi, A., & Teixeira, C. S. (2015). The properties of chlorhexidine and undesired effects of its use in endodontics. Quintessence International, 46(7), 575582. https://doi.org/10.3290/j.qi.a33934Google ScholarPubMed
Bescos, R., Ashworth, A., Cutler, C., Brookes, Z. L., Belfeld, L., Rodiles, A., Agustench, P. C., Farnham, G., Liddle, L., Burleigh, M., White, D., Easton, C., & Hickson, M. (2020). Effects of chlorhexidine mouthwash on the oral microbiome. Scientific Reports, 10, 5254. https://doi.org/10.1038/s41598-020-61912-4CrossRefGoogle ScholarPubMed
Brindley, G. W., & Moll, W. F. Jr. (1965). Complexes of natural and synthetic Ca-montmorillonites with fatty acids (clay-organ studies-ix). American Mineralogist, 50, 13551370.Google Scholar
Chen, K., Ye, W., Cai, S., Huang, L., Zhong, T., Chen, L., & Wang, X. (2016). Green antimicrobial coating based on quaternised chitosan/organic montmorillonite/Ag NPs nano-composites. Journal of Experimental Nanoscience, 11(17), 13601371. https://doi.org/10.1080/17458080.2016.1227095CrossRefGoogle Scholar
CLSI - Clinical and Laboratory Standards Institute. (2015). CLSI document M07-A10 methods for dilution of antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—10th Edition. Clinical and Laboratory Standards Institute.Google Scholar
Cross, S. E., Kreth, J., Zhu, L., Qi, F., Pelling, A. E., Shi, W., & Gimzewski, J. K. (2006). Atomic force microscopy study of the structure–function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology, 17(4), S1S7. https://doi.org/10.1088/0957-4484/17/4/001CrossRefGoogle ScholarPubMed
Escribano, M., Herrera, D., Morante, S., Teughels, W., Quirynen, M., & Sanz, M. (2010). Efficacy of a low-concentration chlorhexidine mouth rinse in non-compliant periodontitis patients attending a supportive periodontal care programme: a randomized clinical trial. Journal of Clinical Periodontology, 37(3), 266275. https://doi.org/10.1111/j.1600-051X.2009.01521.xCrossRefGoogle ScholarPubMed
Gilbert, P., & McBain, A. J. (2003). Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clinical Microbiology Reviews, 16(2), 189208. https://doi.org/10.1128/CMR.16.2.189-208.2003CrossRefGoogle ScholarPubMed
Gilbert, P., & Moore, L. E. (2005). A review, cationic antiseptics: diversity of action under a common epithet. Journal of Applied Microbiology, 99(4), 703715. https://doi.org/10.1111/j.1365-2672.2005.02664.xCrossRefGoogle Scholar
Güven, Y., Ustun, N., Tuna, E. B., & Aktoren, O. (2019). Antimicrobial effect of newly formulated toothpastes and a mouthrinse on specific microorganisms: An in vitro study. European Journal of Dentistry, 13(2), 172177. https://doi.org/10.1055/s-0039-1695655Google Scholar
Herrera, P., Burghardt, R. C., & Phillips, T. D. (2000). Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Veterinary Microbiology, 74(3), 259272. https://doi.org/10.1016/s0378-1135(00)00157-7CrossRefGoogle ScholarPubMed
Hsu, S.-H., Wang, M.-C., & Lin, J.-J. (2012). Biocompatibility and antibacterial evaluation of montmorillonite/chitosan nanocomposites. Applied Clay Science, 56, 5362. https://doi.org/10.1016/j.clay.2011.09.016CrossRefGoogle Scholar
Jiao, L., Lin, F., Cao, S., Wang, C., Wu, H., Shu, M., & Hu, C. (2017). Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc loaded montmorillonite. Journal of Animal Science and Biotechnology, 8(27), 17. https://doi.org/10.1186/s40104-017-0156-6CrossRefGoogle ScholarPubMed
Jiao, L. F., Ke, Y. L., Xiao, K., Song, Z. H., Lu, J. J., & Hu, C. H. (2015). Effects of zinc-exchanged montmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets. Applied Clay Science, 11, 4043. https://doi.org/10.1016/j.clay.2015.04.012CrossRefGoogle Scholar
Lemos, J. A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. A., Abranches, J., & Brady, L. J. (2019). The biology of Streptococcus mutans. Microbiology Spectrum, 7(1), 10.1118. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018CrossRefGoogle ScholarPubMed
Ma, Y.-L., Yang, B., & Xie, L. (2010). Adsorptive property of Cu2+-ZnO/cetylpridinium-montmorillonite complexes for pathogenic bacterium in vitro. Colloids and Surfaces B: Biointerfaces, 79(2), 390396. https://doi.org/10.1016/j.colsurfb.2010.05.001CrossRefGoogle ScholarPubMed
Makvandi, P., Ghaemy, M., Ghadiri, A. A., & Mohseni, M. (2015). Photocurable, antimicrobial quaternary ammonium–modified nanosilica. Journal of Dental Research, 94(10), 14011407. https://doi.org/10.1177/0022034515599973CrossRefGoogle ScholarPubMed
Malachová, K., Praus, P., Rybková, Z., & Kozák, O. (2011). Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Applied Clay Science, 53(4), 642645. https://doi.org/10.1016/j.clay.2011.05.016CrossRefGoogle Scholar
Özdemir, G., Hoşgör-Limoncu, M., & Yapar, S. (2010). The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites. Applied Clay Science, 48(3), 319323. https://doi.org/10.1016/j.clay.2010.01.001CrossRefGoogle Scholar
Özdemir, G., & Yapar, S. (2020). Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 188, 110791. https://doi.org/10.1016/j.colsurfb.2020.110791CrossRefGoogle ScholarPubMed
Özdemir, G., Yapar, S., & Hoşgör-Limoncu, M. (2013). Preparation of cetylpyridinium montmorillonite for antibacterial applications. Applied Clay Science, 72, 201205. https://doi.org/10.1016/j.clay.2013.01.010CrossRefGoogle Scholar
Pupe, C. G., Villardi, M., Rodrigues, C. R., Rocha, H. V. A., Maia, L. C., de Sousa, V. P., & Cabral, L. M. (2011). Preparation and evaluation of antimicrobial activity of nanosystems for the control of oral pathogens Streptococcus mutans and Candida albicans. International Journal of Nanomedicine, 6, 25812590. https://doi.org/10.2147/IJN.S25667Google ScholarPubMed
Rubin, J. E. (2013). Antibacterial susceptibility testing methods and interpretation of results. In Giguére, S., Prescott, J. F., & Dowling, P. M. (Eds.), Antimicrobial Therapy in Veterinary Medicine (pp. 1119). John Wiley and Sons Inc. https://doi.org/10.1002/9781118675014.ch2CrossRefGoogle Scholar
Song, W., & Ge, S. (2019). Application of antimicrobial nanoparticles in dentistry. Molecules, 24(6), 1033. https://doi.org/10.3390/molecules24061033Google ScholarPubMed
Türker, S., Yarza, F., Sánchez, R. M. T., & Yapar, S. (2017). Surface and interface properties of benzethoniumchloride-montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 817825. https://doi.org/10.1016/j.colsurfa.2017.02.019CrossRefGoogle Scholar
Xi, Y., Martens, W., He, H., & Frost, R. L. (2005). Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. Journal of Thermal Analysis and Calorimetry, 81(1), 9197. https://doi.org/10.1007/s10973-005-0750-2CrossRefGoogle Scholar
Yapar, S., Ateş, M., & Özdemir, G. (2017). Preparation and characterization of sodium lauroyl sarcosinate adsorbed on cetylpyridinium-montmorillonite as a possible antibacterial agent. Applied Clay Science, 150, 1622. https://doi.org/10.1016/j.clay.2017.08.025CrossRefGoogle Scholar
Yapar, S., Özdemir, G., Solarte, A. M. F., & Sánchez, R. M. T. (2015). Surface and interface properties of lauroyl sarcosinate-adsorbed CP+-montmorillonite. Clays and Clay Minerals, 63(2), 110118. https://doi.org/10.1346/CCMN.2015.0630203CrossRefGoogle Scholar
Zhao, D., Zhou, J., & Liu, N. (2006). Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied Clay Science, 33(3-4), 161170. https://doi.org/10.1016/j.clay.2006.04.003CrossRefGoogle Scholar
Zhu, J., He, H., Guo, J., Yang, D., & Xie, X. (2003). Arrangement models of alkylammonium cations in the interlayer of HDTMA + pillared montmorillonites. Chinese Science Bulletin, 48, 368372. https://doi.org/10.1007/BF03183232Google Scholar