Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T22:36:37.706Z Has data issue: false hasContentIssue false

Surface Potentials Derived from Co-Ion Exclusion Measurements on Homoionic Montmorillonite and Illite

Published online by Cambridge University Press:  02 April 2024

D. Y. C. Chan
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Australia
I. R. M. Pashley
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Australia
J. P. Quirk
Affiliation:
Waite Agricultural Research Institute, Glen Osmond, South Australia 5064, Australia

Abstract

Simple equations are presented which allow double-layer potentials of clays to be derived from co-ion exclusion measurements in monovalent and divalent electrolyte solutions. These equations have been used to re-interpret earlier results for illite and montmorillonite. The potentials derived follow the lyotropic series for the various homoionic modification of each clay. We have demonstrated that the Schofield equation, which assumes high double-layer potentials, cannot be applied to co-ion exclusion in clay systems. Re-analysis of earlier measurements has shown that for a given homoionic clay the potentials are almost independent of concentration over the range 0.3 to 0.003 molar. Thus, clay surfaces appear to behave more like constant-potential than constant-charge surfaces.

Резюме

Резюме

Представлены простые уравнения, при помощи которых можно получить величины потенциалов двойного слоя для глин из измерений, исключая ионы одинакового знака в одно-и двувалентных электролитических растворах. Эти уравнения использовались для ре-интерпретации ранних результатов для иллита и монтмориллонита. Полученные потенциалы следуют лиотропные серии для разных одноионных модификации каждой глины. Показано, что уравнение Шефельда, которое принимает высобкие потенциалы двойного слоя, не может применятся к исключениям ионов одинакового знака в системах глин. Уточнения ранних измерений показали, что для данной одноионной глины потенциалы почти независят от концентрации в диапазоне 0,3 до 0,003 моля. Таким образом представляется, что поверхности глин ведут себя скорее как поверхности постоянного потенциала, чем постоянного заряда. [E.G.]

Resümee

Resümee

Es wurden einfache Gleichungen angegeben, mit deren Hilfe man die Doppelschichtpotentiale von Tonen aus “Co-ion exclusion measurements” in ein- und zweiwertigen Elektrolytlösungen ableiten kann. Diese Gleichungen wurden benutzt, um frühere Ergebnisse für Illit und Montmorillonit neu zu interpretieren. Die abgeleiteten Potentiale folgten der lyotropen Serie für verschiedene homoionische Modifikationen jedes einzelnen Tons. Es wurde gezeigt, daß die Schofield-Gleichung, die hohe Doppelschichtpotentiale voraussetzt, bei der “Co-ion exclusion” in Tonsystemen nicht angewandt werden kann. Eine erneute Analyse früherer Messungen hat gezeigt, daß die Potentiale für einen bestimmten homoionischen Ton über den Bereich von 0,3 bis 0,003 molar nahezu unabhängig von der Konzentration sind. Das heißt, daß Tonoberflächen sich eher wie Oberflächen mit konstantem Potential zu verhalten scheinen und weniger wie Oberflächen mit konstanter Ladung. [U.W.]

Résumé

Résumé

On presente de simples équations qui permettent de dériver des potentiels à couches doubles d'argiles à partir de mesures d'exclusion de co-ions dans des solutions electrolytes monovalentes et divalentes. Ces équations ont été utilisées pour ré-interpréter des résultats précédants pour l'illite et la montmorillonite. Les potentiels dérivés suivent la série lyotropique pour les modifications homoioniques variées de chaque argile. On a démontré que l’équation de Schofield, qui suppose des potentials élevés à couches doubles, ne peut être appliquée à l'exclusion de co-ions dans des systèmes argileux. La ré-analyse de measures précédantes a montré que pour une argile homoionique donnée, les potentiels sont pres-qu'indépendants de la concentration sur l’étendue 0,3 à 0,003 molaire. Les surfaces d'argiles semblent ainsi se comporter plus comme des surfaces à potential constant que comme surfaces à charge constante. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, L. A. G., Quirk, J. P. and Swineford, A., 1962 The structural status of clay systems Clays and Clay Minerals, Proc. 9th Natl. Conf., West Lafayette, Indiana, 1960 New York Pergamon Press 104130.Google Scholar
Aylmore, L. A. G. and Quirk, J. P., 1971 Domain and quasi-crystalline regions in clay systems Proc. Soil Sci. Soc. Amer. 35 652654.Google Scholar
Bolt, G. H. and Wakentin, B. P., 1958 The negative adsorption of anions from clay suspensions Colloids 156 4146.Google Scholar
Callaghan, I. C. and Ottewill, R. H., 1974 Interparticle forces in montmorillonite gels Farad. Disc. Chem. Soc. 57 110118.CrossRefGoogle Scholar
Cebula, D. J., Thomas, R. K., Harris, N. M., Tabony, J. and White, J. W., 1978 Neutron scattering from colloids Farad. Disc. Chem. Soc. 65 7691.CrossRefGoogle Scholar
Edwards, D. G., 1964 Chloride exclusion by clay mineral surfaces .Google Scholar
Edwards, D.G. and Quirk, J. P., 1962 Repulsion of chloride by montmorillonite J. Coll. Sci. 19 872882.CrossRefGoogle Scholar
Edwards, D. G. and Quirk, J. P., 1965 Repulsion of chloride ions by negatively charged clay surfaces. I. Monovalent cation fithian illite Trans. Farad. Soc. 61 28082815.CrossRefGoogle Scholar
Edwards, D. G. and Quirk, J. P., 1965 Repulsion of chloride ions by negatively charged clay surfaces. II. Monovalent cation montmorillonites Trans. Farad. Soc. 61 28162819.CrossRefGoogle Scholar
Edwards, D. G. and Quirk, J. P., 1965 Repulsion of chloride ions by negatively charged clay surfaces. III. Di- and tri-valent cation clays Trans. Farad. Soc. 62 28202823.CrossRefGoogle Scholar
Fitzsimmons, R. F., Posner, A. M. and Quirk, J. P., 1970 Electron microscopic and kinetic study of the flocculation of calcium montmorillonite Israel J. Chem. 8 301314.CrossRefGoogle Scholar
Friend, J. P. and Hunter, R. J., 1970 Vermiculite as a model system in the testing of double layer theory Clays & Clay Minerals 18 275283.CrossRefGoogle Scholar
Grahame, D. C., 1947 The electrical double layer and the theory of electrocapillarity Chem. Rev. 41 441501.CrossRefGoogle ScholarPubMed
Greene, R. S. B., Posner, A. M., Quirk, J. P., Emerson, W. W., Bond, R. D. and Dexter, A. R., 1978 A study of the coagulation of montmorillonite and illite suspensions by calcium chloride using the electron microscope Modification of Soil Structure New York Wiley 3540.Google Scholar
Greene-Kelly, R., 1964 The specific surface areas of montmorillonites Clay Minerals Bull. 5 392400.CrossRefGoogle Scholar
Healy, T. W. and White, L. R., 1978 Ionizable surface group models of aqueous interfaces Adv. Coll. Int. Sci. 9 303345.CrossRefGoogle Scholar
Low, P. F., 1981 The swelling of clay. III. Dissociation of exchangeable cations J. Soil Sci. Soc. Amer. 45 10741078.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Disc. Farad. Soc. 18 120134.CrossRefGoogle Scholar
Norrish, K., Rausell-Colom, J. A., Swineford, A. and Franks, P. C., 1963 Low angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite Clays & Clay Mineals, Proc. 10th Natl. Conf, Austin, Texas, 1961 New York Pergamon Press 123490.Google Scholar
Pashley, R. M., 1981 DLVO and hydration forces between mica surfaces in Li+, Na+, K+ and Cs+ electrolyte solutions J. Colloid Int. Sci. 83 531546.CrossRefGoogle Scholar
Posner, A. N. and Quirk, J. P., 1964 The adsorption of water from concentrated electrolyte solution by montmo-rillonite and illite Proc. Roy. Soc. 278A 3556.Google Scholar
Schofield, R. K., 1947 Calculation of surface areas from measurments of negative adsorption Nature 147 408410.CrossRefGoogle Scholar
Schramm, L. L. and Kwak, J. C. T., 1982 Interaction in clay suspensions: the distribution of ions in suspension and the influence of tactoid formation Colloids Surfaces 3 4360.CrossRefGoogle Scholar