Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T15:05:00.369Z Has data issue: false hasContentIssue false

Scanning Electron Microscopic Study of Imogolite Formation from Plagioclase

Published online by Cambridge University Press:  01 July 2024

Kazue Tazaki*
Affiliation:
Institute for Thermal Spring Research, Okayama University Misasa, Tottori-ken, 682-02, Japan

Abstract

Imogolite occurs as tiny bumps less than 0.05 µm in diameter and about 0.3 µm long on amorphous thin layers on the surface of weathered plagioclase. The bumps grow outward from the surface to form projections, which then develop into a fibrous imogolite. The fibers branch out and grow into widespread networks or thin films which finally cover the entire surface of the plagioclase grain. The fibers are about 0.05 µm in diameter as seen by transmission electron microscopy.

Резюме

Резюме

Имоголит появляется как очень маленькие выпуклости менее чем 0,05 μм в диаметре и около 0,3 μм в длину на аморфных тонких слоях на поверхности выветренного плагиоклаза. Выпуклости растут от наружной поверхности, образуя выступы, которые затем развиваются в волокнистый имоголит. Волокна разветвляются и разрастаются в широко расстилающиеся сети или тонкие пленки, которые в конце концов покрывают всю поверхность зерна плагиоклаза. Наблюдения с помощью трансмиссионного электронного микроскопа показали, что диаметр волокон обычно около 0,05 μм.

Resümee

Resümee

Imogolit kommt als kleine Blasen vor, welche weniger als 0,05 μm im Durchmesser und ungefähr 0,3 μm in Länge messen und sich auf dünnen, amorphen Schichten auf den Flächen von verwettertem Plagioklas befinden. Die Blasen wachsen nach außen von der Fläche heraus, um Projektionen zu formen, die sich dann zu faserigem Imogolit entwickeln. Die Fasern verzweigen sich und wachsen zu einem ausgedehnten Netz oder dünnen Filmen, welche endlich die gesamte Oberfläche des Plagioklaskems bedecken. Die Fasern sind ungefähr 0,05 μm im Durchmesser, was mit Rasterelektronenmikroskopie gesehen werden kann.

Résumé

Résumé

L'imogolite existe comme petites bosses de moins de 0,05 μm de diamètre et d’à peu près 0,3 μm de long sur de fines couches amorphes sur la surface de plagioclase altéré à l'air. Les bosses croissent de la surface vers l'extérieur pour former des projections qui se développent alors en imogolite fibreuse. Les fibres s’étendent et croissent en de larges réseaux ou en films fins qui couvrent finalement la surface entière du grain de plagioclase. Les fibres ont un diamètre d’à peu près 0,05 μm, vus par le microscope électronique par transmission.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eswaran, H. (1972) Morphology of allophane, imogolite and halloysite: Clay Miner. 9, 281285.CrossRefGoogle Scholar
Honda, S. (1972) A finding of imogolite and gibbsite from Ichinomegate volcanic ejecta bed in Oga Peninsula: Report of the Research Institute of Underground Resources, Mining College, Akita University, 41, 813.Google Scholar
Kurahayashi, S. (1972) The clay mineralogical property of the Daisen volcanic ash formation: J. Geol. Soc. Jpn. 78, 111.CrossRefGoogle Scholar
Noishiki, Y. and Tazaki, K. (1975) Application of critical point drying for scanning electron microscopic study of clay minerals: Papers of the Institute for Thermal Spring Research, Okayama University No. 44, 16.Google Scholar
Parham, W. E. (1969) Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering: Clays & Clay Minerals 17, 1322.CrossRefGoogle Scholar
Tazaki, K. (1971) Imogolite in the Daisen loam and the Sambesan loam: J. Geol. Soc. Jpn. 77, 407414.CrossRefGoogle Scholar
Tazaki, K. (1972) The clay minerals in the Sambesan loam and Daisen loam, Part 1: Earth Science (Chikyū Kagaku) 26, 111.Google Scholar
Tazaki, K. (1975) Micromorphology of imogolite by the scanning electron microscope: Nendo Kagaku 15, 38.Google Scholar
Tazaki, K. (1978) Micromorphology of plagioclase surface at incipient stage of weathering: Earth Science (Chikyū Kagaku) 32, 5862.Google Scholar
Wada, K. and Matsubara, I. (1968) Differential formation of allophane, “imogolite” and gibbsite in the Kitakami pumice bed: Trans. 9th Int. Congr. Soil Sci., Adelaide, Australia, 3, 123131.Google Scholar
Wada, K., Yoshinaga, N., Yotsumoto, H., Ibe, K., and Aida, S. (1970) High resolution electron micrographs of imogolite: Clay Miner. 8, 487489.CrossRefGoogle Scholar
Wada, K., Henmi, T., Yoshinaga, N., and Patterson, S. H. (1972) Imogolite and allophane formed in Saprolite of basalt on Maui, Hawaii: Clays & Clay Minerals 20, 375380.CrossRefGoogle Scholar
Yoshinaga, N. (1970) Imogolite, a new chain-structure type clay mineral: Nendo Kagaku 9, 111.Google Scholar
Yoshinaga, N. and Aomine, S. (1962) Allophane in some Ando soils: Soil Sci. Plant Nutr. (Tokyo) 8, 613.CrossRefGoogle Scholar
Yoshinaga, N., Yotsumoto, H., and Ibe, K. (1968) An electron microscopic study of soil allophane with and ordered structure: Am. Mineral. 53, 319323.Google Scholar