Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T16:31:38.975Z Has data issue: false hasContentIssue false

Review: Progress with Functional Materials Based on Loess Particles

Published online by Cambridge University Press:  01 January 2024

Ya Shen
Affiliation:
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Haiyan Yan
Affiliation:
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Rongmin Wang*
Affiliation:
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Pengfei Song
Affiliation:
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
Yufeng He
Affiliation:
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
*
*E-mail address of corresponding author: wangrm@nwnu.edu.cn

Abstract

Loess is a large-scale deposit which is easy to mine and widely distributed on the epipedon. The clay fraction of loess, also known as ‘loessial clay’, is a very important component of loess which affects its properties and performance. From a ‘materials’ perspective, the clay fraction of loess has been ignored. Recently, loess particles have attracted interest because of their potential applications. The focus in the current review is on the methods of modifying loess particles and their application as functional materials. The major components of loess particles are clays, calcite, and quartz, with the clays including kaolinite, illite, montmorillonite, and chlorite. Loess has a range of particle sizes, types, and dispersibilities. The particles agglomerate readily, mainly because cementation occurs readily in the clay fraction. Loess particles can be modified and their properties can be improved by compaction, separation, purification, acidification, calcination, surfactant modification, geopolymerization, and polymer modification. Loess-based functional materials have been used as sorbents, eco-friendly superabsorbents, soil and water conservation materials, humidity-regulating materials, and building materials. Separated and purified loess particles can adsorb metal ions and harmful elements directly. Surfactant-modified loess particles can remove organic compounds effectively. After modification with polymers, loess particles exhibit greater capacity for the removal of environmental pollutants such as harmful metal ions and dyes. As a superabsorbent, modified loess shows excellent thermal stability and swelling behavior. Calcined loess could be utilized as an energy-saving building material with good humidity-regulating performance, and geological polymerization has further expanded the scope of applications of loess in architecture. In summary, loess-based functional materials, which are inexpensive and ecologically friendly, deserve more attention and further development.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. U. (1961). An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays and Clay Minerals, 10, 380388.CrossRefGoogle Scholar
Arrua, P., Aiassa, G., & Eberhardt, M. (2012). Loess soil stabilized with cement for civil engineering applications. International Journal of Earth Sciences Engineering, 5, 1017.Google Scholar
Bae, J. S. & Bae, J. M. (2018). Manufacturing method of environmentally friendly loess board. Korea, KR 1859442 B1 20180523.Google Scholar
Breen, C., Madejová, J., & Komadel, P. (1995). Correlation of catalytic activity with infrared, Si MAS NMR and acidity data for acidtreated fine fractions of montmorillonites. Pp. 202203 in: Clay and Clay Material Sciences, Proceedings Euroclay'95, Leuwen (Elsen, A., Grobet, P., Keung, M., Lehman, H., Schoonheydt, R., and Toufar, H., editors). Springer.Google Scholar
Cao, Y. B., Wang, B. T., Guo, H. Y., Xiao, H. J., & Wei, J. J. (2017). The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecological Engineering, 102, 270279.CrossRefGoogle Scholar
Catt, J. A. (2001). The agricultural importance of loess. Earth-Science Reviews, 54, 213229.CrossRefGoogle Scholar
Chen, C. H., & Zhu, K. (2006). Effects of CTMAB on adsorption of chlorobenzene onto loess soil. Journal of Lanzhou Jiaotong University, 25(6), 112115.Google Scholar
Chen, X. M., & Peng, Y. J. (2018). Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review, 39, 289307.CrossRefGoogle Scholar
Chen, H., Yang, R. Q., Zhu, K., Zhou, W. J., & Jiang, M. (2002). Attenuating toluene mobility in loess soil modified with anioncation surfactants. Journal of Hazardous Materials, 94, 191201.CrossRefGoogle ScholarPubMed
Chen, L. D., Wei, W., Fu, B. J., & Lu, Y. H. (2007a). Soil and water conservation on the Loess Plateau in China: Review and perspective. Progress in Physical Geography– Earth and Environment, 31, 389403.CrossRefGoogle Scholar
Chen, H., Zhao, Y. G., & Wang, A. Q. (2007b). Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149, 346354.CrossRefGoogle ScholarPubMed
Chen, T. H., Xie, Q. Q., Xu, H. F., Chen, J., Ji, J. F., Lu, H. Y., & Balsam, W. (2010). Characteristics and formation mechanism of pedogenic hematite in quaternary Chinese loess and paleosols. Catena, 81, 217225.CrossRefGoogle Scholar
Chung, D. C., Rha, D. C., & Park, E. S. (2011). Composite solid surface article containing loess, US 7875668B2, 20110125.Google Scholar
Coleman, N., & Harward, M. E. (1953). The heats of neutralization of acid clays and cation-exchange resins. Journal of the American Chemical Society, 75, 60456046.CrossRefGoogle Scholar
Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. T. (2012). Effect of calcium content on soil stabilisation with alkaline activation. Construction and Building Materials, 29, 167174.CrossRefGoogle Scholar
Davidovits, J., (1994). High-alkali cements for 21st century concretes. Pp. 383–398 in: Concrete Technology, Past, Present and Future (Metha, P.K., editor). Farmington Hills: American Concrete Institute, 144.Google Scholar
Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design, 62, 3239.CrossRefGoogle Scholar
Deng, J., Wang, L. M., Zhang, Z. Z., & Bing, H. (2010). Microstructure characteristics and forming environment of late Quaternary Period loess in the Loess Plateau of China. Environmental Earth Sciences, 59, 18071817.CrossRefGoogle Scholar
Deng, C., Hao, Q., Guo, Z., & Zhu, R. (2019). Quaternary integrative stratigraphy and timescale of China. Science China-Earth Sciences, 62, 324348.CrossRefGoogle Scholar
Derbyshire, E. (1983). Origin and characteristics of some Chinese loess at two locations in China. Developments in Sedimentology, 38, 6990.CrossRefGoogle Scholar
Derbyshire, E., Meng, X., & Kemp, R. A. (1998). Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. Journal of Arid Environments, 39, 497516.CrossRefGoogle Scholar
Derbyshire, E., Meng, X. M., Wang, J. T., Zhou, Z. Q., & Li, B. X. (1995). Collapse loess on the loess plateau of China. Genesis and Properties of Collapsible Soils, 267293.CrossRefGoogle Scholar
Drewnik, M., Skiba, M., Szymanski, W., & Zyla, M. (2014). Mineral composition vs. soil forming processes in loess soils – A case study from Kraków (Southern Poland). Catena, 119, 166173.CrossRefGoogle Scholar
Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physicochemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33, 35953602.CrossRefGoogle Scholar
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42, 29172933.CrossRefGoogle Scholar
Eren, E., & Afsin, B. (2007). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes and Pigments, 73, 162167.CrossRefGoogle Scholar
Fan, X. L. (2015). Soil water, fertility and sustainable agricultural production in arid and semiarid regions on the Loess Plateau. Journal of Plant Nutrition and Soil Science, 163, 107113.3.0.CO;2-W>CrossRefGoogle Scholar
Fan, C. H., Du, B., Zhang, Y. C., Ding, S. L., Gao, Y. L., & Chang, M. (2017). Adsorption of lead on organo-mineral complexes isolated from loess in Northwestern China. Journal of Geochemical Exploration, 176, 5056.CrossRefGoogle Scholar
Feng, E. K., Ma, G. F., Wu, Y. J., Wang, H. P., & Lei, Z. Q. (2014). Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess. Carbohydrate Polymers, 111, 463468.CrossRefGoogle ScholarPubMed
Filipe, O. M.S., Vidal, M. M., Scherer, H. W., Schneider, R. J., Duarte, A. C., Esteves, V. I., & Santos, E. B. H. (2010). Effect of long term organic amendments on adsorption-desorption of thiram onto a luvisol soil derived from loess. Chemosphere, 80, 293300.CrossRefGoogle ScholarPubMed
Frini-Srasra, N., & Srasra, E. (2010). Acid treatment of south Tunisian palygorskite: removal of Cd(II) from aqueous and phosphoric acid solutions. Desalination, 250, 2634.CrossRefGoogle Scholar
García Gimenez, R., Vigil de la Villa Mencía, R., & Gonzalez Martín, J. A. (2012). Characterization of loess in central Spain: a microstructural study. Environmental Earth Sciences, 65, 21252137.CrossRefGoogle Scholar
Gillijns, K., Poesen, J., & Deckers, J. (2005). On the characteristics and origin of closed depressions in loess-derived soils in Europe — a case study from central Belgium. Catena, 60, 4358.CrossRefGoogle Scholar
Godderis, Y., Williams, J. Z., Schott, J., Pollard, D., & Brantley, S. L. (2010). Time evolution of the mineralogical composition of Mississippi Valley loess over the last 10 kyr: Climate and geochemical modeling. Geochimica et Cosmochimica Acta, 74, 63576374.CrossRefGoogle Scholar
Gong, H., Zhang, R., Yue, L., Zhang, Y., & Li, J. (2015). Magnetic fabric from red clay sediments in the Chinese Loess Plateau. Scientific Reports, 5, 9706.CrossRefGoogle Scholar
Gong, H., Nie, J., Wang, Z., Peng, W., Zhang, R., & Zhang, Y. A. (2016). Comparison of zircon U-Pb age results of the Red Clay sequence on the central Chinese Loess Plateau. Scientific Reports, 6, 29642.CrossRefGoogle ScholarPubMed
Guan, B. H., Yao, X., Jiang, J. H., Tian, Z. Q., An, S. Q., Gu, B. H., & Cai, Y. (2009). Phosphorus removal ability of three inexpensive substrates: Physicochemical properties and application. Ecological Engineering, 35, 576581.CrossRefGoogle Scholar
Guggenheim, S., & Martin, R. T. (1995). Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals, 43, 255256.CrossRefGoogle Scholar
He, Y. F., Zhang, L., Wang, R. M., Li, H. R., & Wang, Y. (2012). Loess clay based copolymer for removing Pb(II) ions. Journal of Hazardous Materials, 227–228, 334340.CrossRefGoogle ScholarPubMed
Herut, B., Zohary, T., Robarts, R. D., & Kress, N. (1999). Adsorption of dissolved phosphate onto loess particles in surface and deep eastern Mediterranean water. Marine Chemistry, 64, 253265.CrossRefGoogle Scholar
Heydartaemeh, M. R., Aslani, S., & Doulati, A. F. (2017). Loess soil nanoparticles as a novel adsorbent for adsorption of green malachite dye. Journal of Chromatography & Separation Techniques, 8, 21577064.Google Scholar
Huo, L. J., Qian, T. W., Hao, J. T., & Zhao, D. Y. (2013). Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis. Journal of Environmental Radioactivity, 116, 1927.CrossRefGoogle ScholarPubMed
Iannuccelli, V., Maretti, E., Sacchetti, F., Romagnoli, M., Bellini, A., Truzzi, E., Miselli, P., & Leo, E. (2016). Characterization of natural clays from Italian deposits with focus on elemental composition and exchange estimated by EDX analysis: potential pharmaceutical and cosmetic uses. Clays and Clay Minerals, 64, 719731.CrossRefGoogle Scholar
Jiang, M. J., Zhan, F. G., Hu, H. J., Cui, Y. J., & Peng, J. B. (2014). Structural characterization of natural loess and remolded loess under triaxial tests. Engineering Geology, 181, 249260.CrossRefGoogle Scholar
Johnson, W. C., & Willey, K. L. (2000). Isotopic and rock magnetic expression of environmental change at the Pleistocene-Holocene transition in the central Great Plains. Quaternary International, 67, 89106.CrossRefGoogle Scholar
Karathanasis, A. D., & Colrick, P. A. (1991). Soil formation on loess/sandstone toposequences in west-central Kentucky: morphology and physicochemical properties. Soil Science, 152, 1424.CrossRefGoogle Scholar
Kim, B., Choi, H., Kang, K., & Yi, C. (2011). Characteristics of natural loess (hwangtoh) paste subjected to geopolymerization. Journal of the Korea Concrete Institute, 23, 121127.CrossRefGoogle Scholar
Kim, D., Choi, J. H., Hong, Y. P., & Ryoo, K. S. (2017). Use of loess as adsorbent for recovery of Li+ from seawater. Bulletin of the Korean Chemical Society, 38, 511.CrossRefGoogle Scholar
Lan, H. R., Jing, Z. Z., Li, J., Miao, J. J., & Chen, Y. Q. (2017). Influence of pore dimensions of materials on humidity self-regulating performances. Materials Letters, 204, 2326.CrossRefGoogle Scholar
Lee, J. H. (2018). Method for manufacturing functional yellow clay board containing red ginseng ingredient beneficial for human body. Korea, KR 1850750 B1 20180531.Google Scholar
Lenarda, M., Storaro, L., Talon, A., Moretti, E., & Riello, P. (2007). Solid acid catalysts from clays: preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions. Journal of Colloid and Interface Science, 311, 537543.CrossRefGoogle ScholarPubMed
von Leonhard, C. C. (1823). Ungleichartige Gesteine (pp. 356359). Sbst. Rezension.Google Scholar
Li, Z., Tang, Z., Chen, X. W., & Chen, Y. M., & Wang, Y. (2009a). Sorption behavior and mechanism of Pb(II) on Chinese loess. Journal of Environmental Engineering, 135, 5867.CrossRefGoogle Scholar
Li, Z., Tang, Z., Chen, X. W., & Wang, Y. (2009b). Behaviour and mechanism of enhanced phosphate sorption on loess modified with metals: equilibrium study. Journal of Chemical Technology and Biotechnology, 84, 595603.CrossRefGoogle Scholar
Liew, Y. M., Heah, C. Y., Mohd, M. A. B., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: a review. Progress in Materials Science, 83, 595629.CrossRefGoogle Scholar
Liu, D. S. (1965). Loess deposits in China (pp. 143150). Science Press.Google Scholar
Liu, D. S., An, Z. S., & Yuan, B. Y. (1985). Loess and dust in China. Quaternary Studies in China, 6, 113125.Google Scholar
Liu, Z., Cai, C. S., Liu, F. Y., & Fan, F. H. (2016). Feasibility study of loess stabilization with fly ash-based geopolymer. Journal of Materials in Civil Engineering, 28, 04016003.CrossRefGoogle Scholar
Lu, L., Jing, Z., Wang, Z., Pan, X., & Ishida, E. H. (2010). Hydrothermal synthesis of loessial mesoporous materials. AIP Conference Proceedings, 1251, 308311.CrossRefGoogle Scholar
Lu, T. J., Wang, L., He, Y. F., Chen, J., & Wang, R. M. (2017). Loess surface grafted functional copolymer for removing basic fuchsin. RSC Advances, 7, 1837918383.CrossRefGoogle Scholar
Lv, Q. F., Xiang, J. R., He, J. F., Yu, J. J., Li, C. C., Pan, S. J., & Wang, Z. H. (2019) Preparation of loess solidified compacted brick. Patent of China. CN 109320147 A 20190212.Google Scholar
Ma, B. G., Wang, H. Y., Gao, R., & Li, S. L. (2012). Effect of loess for preventing contamination of acid mine drainage from coal waste. Journal of Coal Science and Engineering, 18, 302306.CrossRefGoogle Scholar
Ma, G. F., Feng, E. K., Ran, F. T., Dong, Z. B., & Lei, Z. Q. (2015a). Preparation and sand-fixing property of a novel and eco-friendly organic-inorganic composite. Polymer-Plastics Technology and Engineering, 54, 703710.CrossRefGoogle Scholar
Ma, G. F., Ran, F. T., Yang, Q., Feng, E.K., & Lei, Z. Q. (2015b). Ecofriendly superabsorbent composite based on sodium alginate and organo-loess with high swelling properties. RSC Advances, 5, 5381953828.CrossRefGoogle Scholar
Majidi, B. (2009). Geopolymer technology, from fundamentals to advanced applications: A review. Advanced Materials Technologies, 24, 7987.Google Scholar
Martin, R. T. (1954). Calcium oxalate formation in soil from hydrogen peroxide treatment. Soil Science, 77, 143145.CrossRefGoogle Scholar
Mawulé Dassekpo, J. B., Zha, X. X., & Zhan, J. P. (2017). Synthesis reaction and compressive strength behavior of loess-fly ash based geopolymers for the development of sustainable green materials. Construction and Building Materials, 141, 491500.CrossRefGoogle Scholar
Meng, Z. F., Zhang, Y. P., & Zhang, Z. Q. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159, 492498.CrossRefGoogle ScholarPubMed
Metelkova, Z., Bohac, J., Prikryl, R., & Sedlarova, I. (2012). Maturation of loess treated with variable lime admixture: Pore space textural evolution and related phase changes. Applied Clay Science, 61, 3743.CrossRefGoogle Scholar
Meunier, A. (2006). Why are clay minerals small? Clay Minerals, 41, 551566.CrossRefGoogle Scholar
Minervin, A. V., & Komissarova, N. N. (1979). The structural and textural development of subsiding loess soils of the Minusinks intermontane depression. Engineering Geology, 2, 110.Google Scholar
Moreno-Maroto, J. M., & Alonso-Azcárate, J. (2018). What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 5763.CrossRefGoogle Scholar
Mu, B., & Wang, A. Q. (2016). Adsorption of dyes onto palygorskite and its composites: A review. Journal of Environmental Chemical Engineering, 4, 12741294.CrossRefGoogle Scholar
Nachtegaal, M., & Sparks, D. L. (2004). Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface. Journal of Colloid and Interface Science, 276, 1323.CrossRefGoogle ScholarPubMed
Nie, J. S., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Andò, S., Vermeesch, P., Saylor, J., Lu, H. Y., Breecker, D., Hu, X. F., Liu, S. P., Resentini, A., Vezzoli, G., Peng, W. B., Carter, A., Ji, S. C., & Pan, B. T. (2015). Loess plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communication, 6, 8511.CrossRefGoogle ScholarPubMed
Nouaouria, M. S., Guenfoud, M., & Lafifi, B. (2008). Engineering properties of loess in Algeria. Engineering Geology, 99, 8590.CrossRefGoogle Scholar
Park, J. H., & Jung, D. I. (2011). Removal of total phosphorus (TP) from municipal wastewater using loess. Desalination, 269, 104110.CrossRefGoogle Scholar
Pecsi, M. (1990). Loess is not just accumulation of airborne dust. Quaternary International, 7, 121.CrossRefGoogle Scholar
Pei, X. J., Zhang, F. Y., Wu, W. J., & Liang, S. Y. (2015). Physicochemical and index properties of loess stabilized with lime and fly ash piles. Applied Clay Science, 114, 7784.CrossRefGoogle Scholar
Porter, S. C. (2007). Loess records: China. Pp. 14391440 in: Encyclopedia of Quaternary Science (Scott, A. E., editor). Elsevier, UK.Google Scholar
Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design, 52, 580586.CrossRefGoogle Scholar
Pospisilova, L., Uhlk, P., Mensik, L., Hlisnikovsky, L., Eichmeier, A., Horakova, E., & Vlcek, V. (2020). Clay mineralogical composition and chemical properties of Haplic Luvisol developed on loess in the Protected Landscape Area Litovelské Pomoraví. European Journal of Soil Science, 1–15. https://doi.org/10.1111/ejss.13041.CrossRefGoogle Scholar
Punrattanasin, P., & Sariem, P. (2015). Adsorption of copper, zinc, and nickel using loess as adsorbent by column studies. Polish Journal of Environmental Studies, 24, 12591266.CrossRefGoogle Scholar
Pye, K. (1995). The nature, origin and accumulation of loess. Quaternary Science Reviews, 14, 653667.CrossRefGoogle Scholar
Pye, K., & Johnson, R. (1988). Stratigraphy, geochemistry and thermoluminescence ages of Lower Mississippi Valley Loess. Earth Surface Processes and Landforms, 13, 103124.CrossRefGoogle Scholar
Rampazzo, N. & Blum, W.E.H. (1991). Decrease of layer charge in 2: 1 clay minerals through soil acidification, Malatya-Hekimhan province, Eastern Turkey. Pp. 863864 in: Proceedings 7th Euroclay Conference.Google Scholar
Roberts, H. M., Muhs, D. R., & Bettis, E. A. (2013). Loess records North America. Pp. 60628 in: Encyclopedia of Quaternary Science. Elsevier, Amsterdam.Google Scholar
Rollins, K. M., & Rogers, G. W. (1994). Mitigation measures for small structures on collapsible alluvial soils. Journal of Geotechnical Engineering, 120, 15331553.CrossRefGoogle Scholar
Rousseau, D. D., Derbyshire, E., Antoine, P., & Hatté, C. (2007). Loess records: Europe, Pp. 14401456 in: Encyclopedia of Quaternary Science (Elias, S.A., editor). Elsevier.CrossRefGoogle Scholar
Rubinic, V., Durn, G., sHusnjak, S., & Tadej, N. (2014). Composition, properties and formation of Pseudogley on loess along a precipitation gradient in the Pannonian region of Croatia Catena, 113, 138149.CrossRefGoogle Scholar
Rukh, S., Akhtar, M. S., Mehmood, A., Hassan, S., Khan, K. S., Naqvi, S. M. S., & Imran, M. (2017). Arsenate and arsenite adsorption in relation with chemical properties of alluvial and loess soils. Journal of the Serbian Chemical Society, 82, 943954.CrossRefGoogle Scholar
Shen, Y., Wang, Q. Q., Wang, Y., He, Y. F., Song, P. F., & Wang, R. M. (2018). Itaconic copolymer modified loess for high-efficiently removing copper ions from wastewater. Journal of Dispersion Science and Technology, 40, 794801.CrossRefGoogle Scholar
Shi, Y. X., Dai, X. R., Song, Z. G., Zhang, W. G., & Wang, L. Q. (2005). Characteristics of clay mineral assem blages and their spatial distribution of Chinese loess in different clmiatic zones. Acta Sedimentation Sinica, 23, 690695.Google Scholar
Smalley, I. J. (1966). The properties of glacial loess and the formation of loess deposits. Journal of Sedimentary Petrology, 36, 669676.CrossRefGoogle Scholar
Smalley, I. J. (1995). Making the material: The formation of silt sized primary mineral particles for loess deposits. Quaternary Science Reviews, 14, 645651.CrossRefGoogle Scholar
Smalley, I., & Markovic, S. B. (2019). Controls on the nature of loess particles and the formation of loess deposits. Quaternary International, 502, 160164.CrossRefGoogle Scholar
Smalley, I. J., & Vita-Finzi, C. (1968). The formation of fine particles in sandy deserts and the nature of desert' loess. Journal of Sedimentary Petrology, 38, 766774.Google Scholar
Sun, J. M. (2002). Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203, 845859.CrossRefGoogle Scholar
Tang, X. W., Li, Z. Z., & Chen, Y. M. (2008a). Behaviour and mechanism of Zn(II) adsorption on Chinese loess at dilute slurry concentrations. Journal of Chemical Technology and Biotechnology, 83, 673682.CrossRefGoogle Scholar
Tang, X. W., Zhen, Z. L. I., Chen, Y. M., & Wang, Y. (2008b). Removal of Cu(II) from aqueous solution by adsorption on Chinese quaternary loess: kinetics and equilibrium studies. Environmental Letters, 43, 779791.Google ScholarPubMed
Tang, X., Li, Z., Chen, Y., & Wang, Z. (2009a). Removal of Zn(II) from aqueous solution with natural Chinese loess: Behaviors and affecting factors. Desalination, 249, 4957.CrossRefGoogle Scholar
Tang, X. W., Li, Z. Z., & Chen, Y. M. (2009b). Adsorption behavior of Zn(II) on calcinated Chinese loess. Journal of Hazardous Materials, 161, 824834.CrossRefGoogle ScholarPubMed
Taubner, H., Roth, B., & Tippkotter, R. (2009). Determination of soil texture: Comparison of the sedimentation method and the laserdiffraction analysis. Journal of Plant Nutrition and Soil Science, 172, 161171.CrossRefGoogle Scholar
Thiele, S. (2000). Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess chernozem. Journal of Plant Nutrition and Soil Science, 163, 589594.3.0.CO;2-5>CrossRefGoogle Scholar
Trivedi, P., Axe, L., & Tyson, T. A. (2001). An analysis of zinc sorption to amorphous versus crystalline iron oxides using XAS. Journal of Colloid and Interface Science, 244, 230238.CrossRefGoogle Scholar
Wang, M. K., Wang, S. L., & Wang, W. M. (1996). Rapid estimation of cation-exchange capacities of soils and clays with methylene blue exchange. Soil Science Society of America Journal, 60, 138141.CrossRefGoogle Scholar
Wang, J. T., Wang, Q., Zheng, Y. A., & Wang, A. Q. (2013). Synthesis and oil absorption of poly (butylmethacrylate)/organo-attapulgite nanocomposite by suspended emulsion polymerization. Polymer Composites, 34, 274281.CrossRefGoogle Scholar
Wang, Y., He, Y. F., Wang, L., Huang, Y. J., & Wang, R. M. (2014). Application in wastewater treatment of loess clay and its modification. Technology of Water Treatment, 40, 1621.Google Scholar
Wang, L., He, W. J., He, Y. F., Li, H., & Wang, R. M. (2015a). Loess based copolymer composite for removing basic fuchsin. Key Engineering Materials, 633, 165168.CrossRefGoogle Scholar
Wang, Y., Tang, X. W., & Wang, H. Y. (2015b). Characteristics and mechanisms of Ni(II) removal from aqueous solution by Chinese loess. Journal of Central South University, 22, 41844192.CrossRefGoogle Scholar
Wang, Z. C., Xie, Y. L., Qiu, J. L., Zhang, Y. W., & Fan, H. B. (2017). Field experiment on soaking characteristics of collapsible loess. Advances in Materials Science and Engineering, 117.CrossRefGoogle Scholar
Wang, X. Y., Lu, H. Y., Zhang, H. Z., Wu, J., Hou, X. X., Fu, Y., & Geng, J. Y. (2018). Distribution, provenance, and onset of the Xiashu loess in southeast China with paleoclimatic implications. Journal of Asian Earth Sciences, 155, 180187.CrossRefGoogle Scholar
Warren, C. J., Dudas, M. J., & Abboud, S. A. (1992). Effects of acidification on the chemical composition and layer charge of smectite from calcareous till. Geoderma, 40, 731739.Google Scholar
Wu, T. X., Zhou, M., Guo, H. D., Duan, H., & Chen, H. (2008). Adsorption of tetracycline on loess soils. Acta Scientiae Circumstantiae, 28, 23112314.Google Scholar
Wu, Y. G., Zhang, X. Y., Hu, S. H., & Lu, C. (2012). Jointed effects of inorganic salts and sodium dodecylbenzene sulfonate (SDBS) on sorption and adsorption of phenanthrene in loess soils. Journal of China University of Geosciences, 37, 319325.Google Scholar
Xie, H. J., Wang, S. Y., Qiu, Z. H., & Jiang, J. Q. (2017). Adsorption of NH4+-N on Chinese loess: Non-equilibrium and equilibrium investigations. Journal of Environmental Management, 202, 4654.CrossRefGoogle Scholar
Xing, S. T., Zhao, M. Q., & Ma, Z. C. (2011). Removal of heavy metal ions from aqueous solution using red loess as an adsorbent. Journal of Environmental Sciences, 23, 14971502.CrossRefGoogle ScholarPubMed
Yan, H. Y., Wang, Q. Q., He, Y. F., Shen, Y., Song, P. F., & Wang, R. M. (2020). Loess particles loaded petaloid Bi2S3 nanowires for highly efficient photodegradation of dyes under sunlight. Indian Journal of Chemistry, 59A, 14421448.Google Scholar
Yang, H. M., Tang, A. D., Ouyang, J., Li, M., & Mann, S. (2010). From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. Journal of Physical Chemistry B, 114, 23902398.CrossRefGoogle ScholarPubMed
Yang, Q. L., Zhang, J. L., Yang, Q., Yu, Y. X., & Yang, G. (2012). Behavior and mechanism of Cd(II) adsorption on loess modified clay liner. Desalination and Water Treatment, 39, 1020.Google Scholar
Yi, Z. Z., Huang, L., Liu, F., Kuang, W. M., Ling, F. Q., & Zhu, J. (2017). The properties of clay minerals in soil particles from two Ultisols, China. Clays and Clay Minerals, 65, 273285.Google Scholar
Yin, X. Q., Yu, L., Luo, X. H., Zhang, Z., Sun, H. M., Mosa, A. A., & Wang, N. (2019). Sorption of Pb (II). onto < 1 μm effective diameter clay minerals extracted from different soils of the Loess Plateau, China. Geoderma, 337, 10581066.CrossRefGoogle Scholar
Yip, C. K., Lukey, G. C., & Deventer, J. S. J. V. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35, 16881697.CrossRefGoogle Scholar
Yoo, S. B. & Cho, M. H. (2019). Eco-friendly composite panel using an eco-friendly material for building. Patent of Korea, KR 1939707 B1 20190117.Google Scholar
Zhan, H. Y., Jiang, Y. F., Yuan, J. M., & Chen, H. (2005). Sorption kinetics of naphthalene and phenanthrene to loess soils. Environmental Science & Technology, 28, 1011.Google Scholar
Zhang, Z. H. (1963). The theoretical basis of loess classification in China. Georeview, 21, 1214.Google Scholar
Zhang, Y. S., & Qu, Y. X. (2005). Cement of sand loess and their cementation in north Shaanxi and west Shanxi. Journal of Engineering Geology (China), 13, 1828.Google Scholar
Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013a). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 14681478.CrossRefGoogle Scholar
Zhang, Y., Jing, Z. Z., Fan, X. W., Fan, J. J., Lu, L., & Ishida, E. H. (2013b). Hydrothermal synthesis of humidity-regulating material from calcined loess. Industrial & Engineering Chemistry Research, 52, 47794786.CrossRefGoogle Scholar
Zhang, Z. Y., Huang, L., Liu, F., Wang, M. K., Fu, Q. L., & Zhu, J. (2017). The properties of clay minerals in soil particles from two Ultisols, China. Clays and Clay Minerals, 65, 273285.CrossRefGoogle Scholar
Zhang, Z. K., Li, G. J., Yan, H., & An, Z. S. (2018). Microcodium in Chinese loess as a recorder for the oxygen isotopic composition of monsoonal rainwater. Quaternary International, 464(B), 364369.CrossRefGoogle Scholar
Zhao, Z. H., Wu, S. Z., & Chen, Y. S. (2012). Experimental study on the disposal of coal acid mine drainage with loess. Geotechnical Investigation & Surveying, 5, 3841.Google Scholar
Zhao, C. L., Shao, M. A., Jia, X. X., & Zhang, C. C. (2016). Particle size distribution of soils (0–500 cm). in the Loess Plateau, China. Geoderma Regional, 7, 251258.CrossRefGoogle Scholar
Zhou, W. J., Yang, R. Q., Jiang, M., Zhan, H. Y., Chen, H., & Liu, G. G. (2002). Effect of surfactant on sorption behavior of 2,4-dichlorophenol in loess soils. China Environmental Science, 22, 316319.Google Scholar
Zhou, W. J., Zhu, K., Zhan, H. Y., Jiang, M., & Chen, H. (2003). Sorption behaviors of aromatic anions on loess soil modified with cationic surfactant. Journal of Hazardous Materials, B100, 209218.CrossRefGoogle Scholar
Zhu, X. M. (1991). The formation of loess plateau and its harnessing measures. Bulletin of Soil and Water Conservation, 11, 18.Google Scholar
Zhu, M. R. (1995). Plastic index classification of loess foundation. Journal of Northwest Institute of Architecture Engineering, 1, 68.Google Scholar