Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T02:55:25.197Z Has data issue: false hasContentIssue false

Removal Efficiency of Basic Blue 41 by Three Zeolites Prepared from Natural Jordanian Kaolin

Published online by Cambridge University Press:  01 January 2024

Mousa Gougazeh*
Affiliation:
Geology Department, Taibah University, P.O. Box: 30002, 41447, Madinah, Saudi Arabia Natural Resources and Chemical Engineering, Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
Fethi Kooli
Affiliation:
Community College, Taibah University- Al-Mahd Branch, 44112, Mahd Al-Dahb, Saudi Arabia
J.-Ch. Buhl
Affiliation:
Institute of Mineralogy, Leibniz University Hannover, Callinstr. 3, D-30167, Hannover, Germany
*
*E-mail address of corresponding author: dr_eng_mhag@yahoo.com

Abstract

The conventional method of zeolite synthesis involves an expensive hydrothermal step whereby a mixture of a metakaolinite, sodium hydroxide, and water is preactivated by thermal treatment between 400°C and 1000°C. The objective of the current study was to determine whether Jordanian kaolinite could be converted to zeolite materials without thermal pre-activation. The alkaline hydrothermal transformation of kaolinite into hydroxysodalite (HS) was achieved, then followed by a reaction with citric acid and solid sodium hydroxide to obtain Zeolite A, or by adding solid Na2SiO3 to prepare zeolite X. These materials were tested for their ability to serve as removal agents for Basic Blue 41 (BB-41) dye from artificially contaminated water, at concentrations ranging from 25 to 1000 mg/L. The maximum removal capacities were estimated using the Langmuir model, with a value of 39 mg/g for hydroxysodalite. Zeolite-X achieved the lowest value (19 mg/g). The feasibility of BB-41 removal was deduced from the Freundlich model for the zeolites studied. The reported low-cost method is proposed as an alternative way to reduce the cost of synthesizing zeolite, and the materials were shown to be potential candidates for the removal of BB-41 dye.

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullahi, T., Harun, Z., & Othman, M. H. D. (2017). A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Advanced Powder Technology, 28, 18271840.CrossRefGoogle Scholar
Adeyemo, A. A., Adeoye, I. O., & Bello, O. S. (2015). Adsorption of dyes using different types of clay: A review. Applied Water Science, 7, 126.Google Scholar
Alkan, M., Hopa, C., Yilmaz, Z., & Guler, H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolin. Microporous Mesoporous Materials, 86, 176184.CrossRefGoogle Scholar
Anipsitakis, G. P., Dionysiou, D. D., & Gonzalez, M. A. (2006). Cobalt-mediated activation of Peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environmental Science and Technology, 40, 10001007.CrossRefGoogle ScholarPubMed
Awala, H., Leite, E., Saint-Marcel, L., Clet, G., Retoux, R., Naydenova, I., & Mintova, S. (2016). Properties of methylene blue in the presence of zeolite nanoparticles. New Journal of Chemistry, 40, 42774284.CrossRefGoogle Scholar
Barer, R. M. (1982). Hydrothermal chemistry of zeolites. London: Academic Press.Google Scholar
Barer, R. M. (1987). Zeolites and clay minerals as sorbent and molecular sieves. New York: Academic Press.Google Scholar
Barnes, M. C., Addai-Mensah, J., & Gerson, A. R. (1999a). The mechanism of the sodalite-to- cancrinite phase transformation in synthetic spent Bayer liquor. Microporous Mesoporous Materials, 31, 287302.CrossRefGoogle Scholar
Baughman, G. L., & Perenich, T. A. (1988). Fate of dyes in aquatic systems: I. Solubility and partitioning of some hydrophobic dyes and related compounds. Environmental Toxicology Chemistry, 7, 183199.CrossRefGoogle Scholar
Bertolini, T. C. R., Izidoro, J. C., Magdalena, C. P., & Fungaro, D. A. (2013). Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital Electron Journal Chemistry, 5, 179191.Google Scholar
Breck, D. W. (1974). Zeolite molecular sieves: Structure, chemistry and use. New York: John Wiley & Sons Inc.Google Scholar
Buhl, J. C., Hoffmann, W., Buckermann, W. A., & Muller-Warmuth, W. (1997). The crystallization kinetics of sodalites grown by the hydrothermal transformation of kaolinite studied by 29Si MAS NMR. Solid State Nuclear Magnetic Resonance, 9, 121128.CrossRefGoogle ScholarPubMed
Chung, K. T., & Cerniglia, C. E. (1992). Mutagenicity of azo dyes: Structure-activity relationships. Mutation Research, 277, 201220.CrossRefGoogle ScholarPubMed
Costa, E., De Lucas, A., Uguina, M. A., & Ruiz, J. C. (1988). Synthesis of 4A zeolite from calcined kaolins for use in detergents. Industrial and Engineering Chemistry Research, 27, 12911296.CrossRefGoogle Scholar
Dubey, A., Goyal, D., & Mishra, A. (2013) Zeolites in wastewater treatment. Pp. 82104 in: Green materials for sustainable water remediation and treatment (Mishra, A. & Clark, J.H., editors). RSC Green Chemistry Series, The Royal Society of Chemistry, Cambridge, UK.CrossRefGoogle Scholar
Farmer, V.C. (1979) Infrared spectroscopy. Pp. 285337 in: Data handbook for clay minerals and other non-metallic minerals (Olphen, H. van & Fripiat, J.J., editors). Pergamon Press, New York, USA.Google Scholar
Flanigen, E., Khatami, M., & Szymanski, H. A. (1971). Infrared structural studies of zeolite frameworks. Advances in Chemistry, 101, 201229.CrossRefGoogle Scholar
Freundlich, U. (1906). Dye adsorption in lusungen. Journal of Physical Chemistry, 57, 385470.Google Scholar
Garrido Pedrosa, A. M., Souza, M. J. B., Melo, D. M. A., & Araújo, A. S. (2006). Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties. Materials Research Bulletin, 41, 11051111.CrossRefGoogle Scholar
Gougazeh, M., & Buhl, J. C. (2010). Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit, southern Jordan, for its possible utilization. Clay Minerals, 45, 281294.CrossRefGoogle Scholar
Gougazeh, M., & Buhl, J. C. (2014). Conversion of natural Jordanian kaolin into zeolite a without thermal pre-activation. Zeitschrift für Anorganische und Allgemeine Chemie, 640, 16751679.CrossRefGoogle Scholar
Gupta, V. K., & Suhas, (2009). Application of low-cost adsorbents for dye removal-a review. Journal of Environmental Management, 90, 23132342.CrossRefGoogle ScholarPubMed
Heller-Kallai, L., & Lapides, I. (2007). Reactions of kaolinites and metakaolinites with NaOH-comparison of different samples (part 1). Applied Clay Science, 35, 99107.CrossRefGoogle Scholar
Hernández-Montoya, V., Pérez-Cruz, M. A., Mendoza-Castillo, D. I., Moreno-Virgen, M. R., & Bonilla-Petriciolet, A. (2013). Competitive adsorption of dyes and heavy metals on zeolitic structures. Journal of Environmental Management, 116, 213221.CrossRefGoogle ScholarPubMed
Hiraki, A., Nosaka, A., Okinaka, N., & Akiyama, T. (2009). Synthesis of zeolite-X from waste metals. Journal of the Iron and Steel Institute of Japan International, 49, 16441649.CrossRefGoogle Scholar
Huling, S. G., Jones, P. K., & Lee, T. R. (2007). Iron optimization for Fenton-driven chemical oxidation of MTBE-spent granular activated carbon. Environmental Science and Technology, 41, 40904096.CrossRefGoogle ScholarPubMed
Humelnicu, I., Baiceanu, A., Ignat, M. E., & Dulman, V. (2017). The removal of basic blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Process Safety and Environmental Protection, 105, 274287.CrossRefGoogle Scholar
Ismadji, S., & Bhatia, S. K. (2000). Adsorption of flavor esters on granular activated carbon. Canadian Journal of Chemical Engineering, 78, 892901.CrossRefGoogle Scholar
Job, R. (2005) Zeolites and nanoclusters in zeolite host lattices. Pp. 127142 in: Nanotechnology and nanoelectronics: materials, devices, measurement techniques (Fahrner, W.R. editor). Springer, Berlin.Google Scholar
Johnson, E. B. G., & Arshad, S.E. (2014). Hydrothermally synthesized zeolites based on kaolinite: A review. Applied Clay Science, 97-98, 215221.CrossRefGoogle Scholar
Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M. A., & Turan, M. (2007). Basic and reactive dye removal using natural and modified zeolites. Journal of Chemical & Engineering Data, 52, 24362441.CrossRefGoogle Scholar
Kooli, F., Yan, L., Al-Faze, R., & Al-Sehimi, A. (2015a). Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Applied Clay Science, 116–117, 2330.CrossRefGoogle Scholar
Kooli, F., Yan, L., Al-Faze, R., & Al-Sehimi, A. (2015b). Removal enhancement of basic blue 41 by waste brick from an aqueous solution. Arabian Journal of Chemistry, 8, 333342.CrossRefGoogle Scholar
Kyzas, G., & Kostoglou, M. (2014). Green adsorbents for wastewaters: A Critical Review. Materials, 7, 333364.Google ScholarPubMed
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 22212295.CrossRefGoogle Scholar
Lee, S. R., Han, Y. S., Park, M., Park, G. S., & Choy, J. H. (2003). Nanocrystalline sodalite from Al2O3 pillared clay by solid-solid transformation. Chemistry of Materials, 15, 48414845.CrossRefGoogle Scholar
Li, C., Dong, Y., Wu, D., Peng, L., & Kong, H. (2011). Surfactant modified zeolite as adsorbent for removal of humic acid from water. Applied Clay Science, 52, 353357.CrossRefGoogle Scholar
Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3, 928949.CrossRefGoogle Scholar
Lim, J. L., & Okada, M. (2005). Regeneration of granular activated carbon using ultrasound. Ultrasonics Sonochemistry, 12, 277282.CrossRefGoogle ScholarPubMed
Ltaief, O. O., Siffert, S., Poupin, C., Fourmentin, S., & Benzina, M. (2015). Optimal synthesis of Faujasite-type zeolites with a hierarchical porosity from natural clay. European Journal of Inorganic Chemistry, 28, 46584665.CrossRefGoogle Scholar
Madani, A., Aznar, A., Sanz, J., & Serratosa, J. M. (1990). Silicon-29 and aluminum-27 NMR study of zeolite formation from alkalileached kaolinites: influence of thermal pre-activation. Journal of Physical Chemistry, 94, 760765.CrossRefGoogle Scholar
Martin, R. J., & Ng, W. J. (1978). The repeated exhaustion and chemical regeneration of activated carbon. Water Research, 21, 961965.CrossRefGoogle Scholar
Miranda-Trevinol, J. C., & Coles, C. A. (2003). Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science, 23, 133139.CrossRefGoogle Scholar
Nandi, B. K., Goswami, A., & Purkait, M. K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42, 583590.CrossRefGoogle Scholar
Narbaitz, R. M., & Karimi-Jashni, A. (2008). Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter. Environmental Technology, 30, 2736.CrossRefGoogle Scholar
Ng, E.P., Zou, X., and Mintova, S. (2013) Environmental synthesis concerns of zeolites. Pp. 289310 in: New and future developments in catalysis: Hybrid materials, composites, and organocatalyts (Suib, L.S., editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
Patel, S. (2012). Potential of fruit and vegetable wastes as novel biosorbents: Summarizing the recent studies. Reviews in Environmental Science and Biotechnology, 4, 365380.CrossRefGoogle Scholar
Pentrak, M., Madejová, J., & Komadel, P. (2009). Acid and alkali treatments of kaolins. Clay Minerals, 44, 511523.CrossRefGoogle Scholar
Pentrak, M., Madejová, J., Andrejkovičová, S., Uhlík, P., & Komadel, P. (2012). Stability of kaolin sand from Vyšný Petrovec deposit (South Slovakia) in acid environment. Geologica Carpathica, 63, 503512.Google Scholar
Querol, X., Moreno, N., Umana, J. C., Alastuey, A., Hernandez, E., Lopez-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: An overview. International Journal of Coal Geology, 50, 413423.CrossRefGoogle Scholar
Rees, L., & Chandrasekhar, S. (1993). Hydrothermal reaction of kaolin in presence of fluoride ions at pH less than 10. Zeolites, (13), 534541.CrossRefGoogle Scholar
Rhodes, C. J. (2010). Properties and applications of zeolites. Science Progress, 93, 223284.CrossRefGoogle Scholar
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresources Technology, 77, 247255.CrossRefGoogle ScholarPubMed
Roulia, M., & Vassiliadis, A. A. (2005). Interactions between C.I. Basic blue 41 and aluminosilicate sorbents. Journal of Colloid and Interface Science, 291, 3744.CrossRefGoogle ScholarPubMed
Russell, J.D. (1987) Infrared methods. Pp. 133173 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Schwanke, A.J., Balzer, R., and Pergher, S. (2017) Microporous and mesoporous materials from natural and inexpensive sources. Pp. 122 Chapter 1. in: Handbook of Ecomaterials, (Martínez, L.M.T., Kharissova, O.V., and Khatisov, B.I., editors), Springer, Basel.Google Scholar
Selim, M.M., El-Makkawi, D. M., & Ibrahim, F. A. (2018). Innovative synthesis of black zeolites-based kaolin and their adsorption behavior in the removal of methylene blue from water. Journal of Materials Science, 53, 33233331.CrossRefGoogle Scholar
Shende, R. V., & Mahajani, V. V. (2002). Wet oxidative regeneration of activated carbon loaded with reactive dye. Waste Management, 22, 7383.CrossRefGoogle ScholarPubMed
Somerset, V. S., Petrik, L. F., White, R. A., Klink, M. J., Key, D., & Iwuoha, E. I. (2005). Alkaline hydrothermal zeolites synthesized from high SiO2 and Al2O3 co-disposal fly ash filtrates. Fuel, 84, 23242329.CrossRefGoogle Scholar
Song, L., Chen, F., Hu, J. C., & Richards, R. (2009). NiO (111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology, 20, 275707275716.CrossRefGoogle ScholarPubMed
de Sousa, M. L., de Moraes, P. B., Matos Lopes, P. R., Montagnolli, R. N., de Angelis, D., & Bidoia, E. D. (2012). Contamination by Remazol red brilliant dye and its impact in aquatic photosynthetic microbiota. Environmental Management and Sustainable Development, 1, 129138.Google Scholar
Tajul Islam, M., Aimone, F., Ferri, A., & Rovero, G. (2015). Use of N-methylformanilide as swelling agent for meta-aramid fibers dying: Kinetics and equilibrium adsorption of basic blue 41. Dyes and Pigments, 113, 554561.CrossRefGoogle Scholar
Tamon, Z. H., & Okazaki, M. (1997). Influence of surface oxides on ethanol regeneration of spent carbonaceous adsorbents. Journal of Colloid and Interface Science, 196, 120122.CrossRefGoogle ScholarPubMed
Vimonses, V., Jim, B., Chow, C. K. W., & Saint, C. (2009). Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide. Journal of Hazardous Materials, 171, 941947.CrossRefGoogle ScholarPubMed
Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 1124.CrossRefGoogle Scholar
Wang, S., Li, H., Xie, S., Liu, S., & Xu, L. (2006). Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere, 65, 8287.CrossRefGoogle ScholarPubMed
Yagub, M. T., Kanti Sen, T., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172184.CrossRefGoogle ScholarPubMed
Yuna, Z. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33, 443454.CrossRefGoogle Scholar
Zaarour, M., Dong, B., Naydenova, I., Retoux, R., & Mintova, S. (2014). Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials, 189, 1121.CrossRefGoogle Scholar
Zhao, H., Deng, Y., Harsh, J., Flury, M., & Boyle, J. (2004). Alteration of kaolinite to cancrinite and sodalite by simulated Hanford waste and its impact on cesium retention. Clays Clay Minerals, 52, 113.CrossRefGoogle Scholar