Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T20:25:32.490Z Has data issue: false hasContentIssue false

Reflectance Spectroscopy for Organic Detection and Quantification in Clay-Bearing Samples: Effects of Albedo, Clay Type, and Water Content

Published online by Cambridge University Press:  01 January 2024

Hannah H. Kaplan*
Affiliation:
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook St., Box 1846, Providence, RI 02912, USA
Ralph E. Milliken
Affiliation:
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook St., Box 1846, Providence, RI 02912, USA
*
*E-mail address of corresponding author: Hannah_Kaplan@brown.edu

Abstract

Reflectance spectroscopy is a rapid and non-destructive method that can be used to detect organic compounds in geologic samples over a wide range of spatial scales that includes outcrops, hand samples, drill cores, and planetary surfaces. In order to assess the viability of this technique for quantification of organics and aliphatic compounds in particular, the present study examines how clay mineralogy, water content, and albedo influence the strength of organic absorptions in near-infrared (NIR) reflectance spectra. The effects of clay structure and water content are evaluated using kaolinite, smectite (montmorillonite), and a mixed-layer illite-smectite as starting materials. Absorption strengths for C—H absorptions are compared to known total organic carbon (TOC) values using both reflectance spectra and single scattering albedo (SSA) spectra derived from a Hapke radiative transfer model. A linear relationship was observed between band depth and TOC for each sample suite, but strong albedo variation led to non-unique trends when band depths were calculated from reflectance spectra. These effects were minimized by conversion to SSA, for which band depth-TOC trends were similar for all mixture suites regardless of albedo or hydration level, indicating that this approach may be more broadly applicable for clay and organic-bearing samples. Extrapolation of band depth-TOC trends for the synthetic mixtures suggested a very conservative lower limit of detection of <1 wt.% TOC, but preliminary results for natural organic-bearing shales indicated that detection limits may be an order of magnitude lower.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M.J. Awaja, F. Bhargava, S. Grocott, S. and Romeo, M., 2005 Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy Fuel 84 19861991.CrossRefGoogle Scholar
Anderson, M.S. Andringa, J.M. Carlson, R.W. Conrad, P. Hartford, W. Shafer, M. Soto, A. Tsapin, A.I. Dybwad, J.P. Wadsworth, W. and Hand, K., 2005 Fourier transform infrared spectroscopy for Mars science Review of Scientific Instruments 76 034101.CrossRefGoogle Scholar
Audouard, J. Poulet, F. Vincendon, M. Milliken, R.E. Jouglet, D. Bibring, J.-P. Gondet, B. and Langevin, Y., 2014 Water in the Martian regolith from OMEGA/Mars Express: Mars 3 µm absorption and water mobility Journal of Geophysical Research: Planets 119 19691989.CrossRefGoogle Scholar
Barber, D.J., 1981 Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites Geochimica et Cosmochimica Acta 45 945970.CrossRefGoogle Scholar
Bell, J.F., Rice, M.S., Johnson, J.R., and Hare, T.M. (2008) Surface albedo observations at Gusev Crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113,.CrossRefGoogle Scholar
Bibring, J.-P. Pilorget, C. Evesque, C. and Hamm, V., 2012.MicrOmega: an hyperspectral NIR microscope on board Hayabusa2 Asteroids, Comets, MeteorsGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 702716.CrossRefGoogle Scholar
Cai, J. Bao, Y. Yang, S. Wang, X. Fan, D. Xu, J. and Wang, A., 2007 Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone Science in China Series D: Earth Sciences 50 765775.CrossRefGoogle Scholar
Chang, C.-W. Laird, D.A. Mausbach, M.J. and Hurburgh, C.R., 2001 Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties Soil Science Society of America Journal 65 480490.CrossRefGoogle Scholar
Chapman, C.R. Morrison, D. and Zellner, B., 1975 Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry Icarus 25 104130.CrossRefGoogle Scholar
Clark, R.N., 1983 Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water Journal of Geophysical Research 88 10635.CrossRefGoogle Scholar
Clark, R.N., Rencz, A.N., 1999 Spectroscopy of rocks and minerals, and principles of spectroscopy Manual of Remote Sensing New York John Wiley and Sons 358.Google Scholar
Clark, R.N. and Roush, T.L., 1984 Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications Journal of Geophysical Research 89 6329.CrossRefGoogle Scholar
Clark, R.N., Curchin, J.M., Hoefen, T.M., and Swayze, G.A. (2009) Reflectance spectroscopy of organic compounds: 1. Alkanes. Journal of Geophysical Research, 114,.CrossRefGoogle Scholar
Clark, R.N., Swayze, G.A., Leifer, I., Kokaly, K.E., Hoefen, T.M., Lundeen, S., Eastwood, M., Green, R.O., Pearson, N., Sarture, C., McCubbin, I., Roberts, D., Bradley, E., Steele, D., Ryan, T., Dominguez, R., and Team, AVIRIS (2010) A method for quantitative mapping of thick oil spills using imaging spectroscopy: U.S. Geological Survey Open-File Report 2010-1167. 51.CrossRefGoogle Scholar
Cloutis, E.A. Hudon, P. Hiroi, T. and Gaffey, M.J., 2012 Spectral reflectance properties of carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites Icarus 220 586617.CrossRefGoogle Scholar
Cooper, C. and Mustard, J., 1999 Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil Icarus 142 557570.CrossRefGoogle Scholar
Duke, E.F., 1994 Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing Geology 22 621624.2.3.CO;2>CrossRefGoogle Scholar
Durand, B., 1980)editor (Sedimentary organic matter and kerogen: Definition and quantitative importance of kerogen. Pp. 1334 in: Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Technip Editions, Paris.CrossRefGoogle Scholar
Freissinet, C. Glavin, D. P. Mahaffy, P. R. Miller, K. E. Eigenbrode, J. L. Summons, R. E. Brunner, A. E. Buch, A. Szopa, C. Archer, P. D. Franz, H. B. Atreya, S. K. Brinckerhoff, W. B. Cabane, M. Coll, P. Conrad, P. G. Des Marais, D. J. Dworkin, J. P. Fairén, A. G. François, P. Grotzinger, J. P. Kashyap, S. ten Kate, I. L. Leshin, L. A. Malespin, C. A. Martin, M. G. Martin-Torres, F. J. McAdam, A. C. Ming, D. W. Navarro-González, R. Pavlov, A. A. Prats, B. D. Squyres, S. W. Steele, A. Stern, J. C. Sumner, D. Y. Sutter, B. and Zorzano, M.-P., 2015 Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars Journal of Geophysical Research: Planets 120 3 495514.CrossRefGoogle ScholarPubMed
Gaffey, M.J. Bell, J.F. and Cruikshank, D.P., 1989 Reflectance spectroscopy and asteroid surface mineralogy Asteroids II Arizona, USA University of Arizona Press 98127.Google Scholar
Gelpi, E. Schneider, H. Mann, J. and Oró, J., 1970 Hydrocarbons of geochemical significance in microscopic algae Phytochemistry 9 603612.CrossRefGoogle Scholar
Glavin, D.P. Freissinet, C. Miller, K.E. Eigenbrode, J.L. Brunner, A.E. Buch, A. Sutter, B. Archer, P.D. Atreya, S.K. Brinckerhoff, W.B. Cabane, M. Coll, P. Conrad, P.G. Coscia, D. Dworkin, J.P. Franz, H.B. Grotzinger, J.P. Leshin, L.A. Martin, M.G. McKay, C. Ming, D.W. Navarro-González, R. Pavlov, A. Steele, A. Summons, R.E. Szopa, C. Teinturier, S. and Mahaffy, P.R., 2013 Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater: Evidence for perchlorates at Rocknest Journal of Geophysical Research: Planets 118 19551973.CrossRefGoogle Scholar
Greenberger, R.N. Mustard, J.F. Ehlmann, B.L. Blaney, D.L. Cloutis, E.A. Wilson, J.H. Green, R.O. and Fraeman, A.A., 2015 Imaging spectroscopy of geological samples and outcrops: Novel insights from microns to meters GSA Today 25 410.CrossRefGoogle Scholar
Hapke, B., 1981 Bidirectional reflectance spectroscopy: 1 Theory. Journal of Geophysical Research 86 3039.CrossRefGoogle Scholar
Hapke, B., 1993 Theory of Reflectance and Emittance Spectroscopy Cambridge, UK Cambridge University Press 513.CrossRefGoogle Scholar
Hapke, B., 2008 Bidirectional reflectance spectroscopy Icarus 195 918926.CrossRefGoogle Scholar
Hedges, J.I. and Keil, R.G., 1995 Sedimentary organic matter preservation: An assessment and speculative synthesis Marine Chemistry 49 81115.CrossRefGoogle Scholar
Herron, M. Loan, M. Charsky, A. Herron, S.L. Pomerantz, A.E. and Polyakov, M., 2014 American Association of Petroleum Geologists Clay typing, mineralogy, kerogen content and kerogen characterization from DRIFTS analysis of cuttings or core.CrossRefGoogle Scholar
Hulst, HC v d, 1981 Light Scattering by Small Particles New York Dover Publications 470.Google Scholar
Izawa, M.R.M. Applin, D.M. and Cloutis, E.A., 2014.Detection limits of polycyclic aromatic hydrocarbons (PAHs) in Martian soil simulant JSC Mars-1 45th Lunar and Planetary Science ConferenceGoogle Scholar
Izawa, M.R.M. Applin, D.M. Norman, L. and Cloutis, E.A., 2014 Reflectance spectroscopy (350-2500 nm) of solidstate polycyclic aromatic hydrocarbons (PAHs) Icarus 237 159181.CrossRefGoogle Scholar
Johnson, T.V. and Fanale, F.P., 1973 Optical properties of carbonaceous chondrites and their relationship to asteroids Journal of Geophysical Research 78 85078518.CrossRefGoogle Scholar
Keil, R.G. and Mayer, L.M., 2014 Mineral matrices and organic matter Treatise on Geochemistry Amsterdam Elsevier 337359.CrossRefGoogle Scholar
Keil, R.G. Montlucon, D.B. Prahl, F.G. and Hedges, J.I., 1994 Sorptive preservation of labile organic matter in marine sediments Nature 370 549552.CrossRefGoogle Scholar
Kennedy, M.J., 2002 Mineral surface control of organic carbon in black shale Science 295 657660.CrossRefGoogle ScholarPubMed
Kennedy, M.J. Lóhr, S.C. Fraser, S.A. and Baruch, E.T., 2014 Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis Earth and Planetary Science Letters 388 5970.CrossRefGoogle Scholar
Kieffer, H.H. Martin, T.Z. Peterfreund, A.R. Jakosky, B.M. Miner, E.D. and Palluconi, F.D., 1977 Thermal and albedo mapping of Mars during the Viking primary mission Journal of Geophysical Research 82 42494291.CrossRefGoogle Scholar
Lauretta, D.S. Bartels, A.E. Barucci, M.A. Bierhaus, E.B. Binzel, R.P. Bottke, W.F. Campins, H. Chesley, S.R. Clark, B.C. Clark, B.E. Cloutis, E.A. Connolly, H.C. Crombie, M.K. Delbó, M. Dworkin, J.P. Emery, J.P. Glavin, D.P. Hamilton, V.E. Hergenrother, C.W. Johnson, C.L. Keller, L.P. Michel, P. Nolan, M.C. Sandford, S.A. Scheeres, D.J. Simon, A.A. Sutter, B.M. Vokrouhlický, D. and Walsh, K.J., 2015 The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations Meteoritics & Planetary Science 50 834849.CrossRefGoogle Scholar
Li, L., 2008 Quantifying lunar soil composition with partial least squares modeling of reflectance Advances in Space Research 42 267274.CrossRefGoogle Scholar
Li, S. Li, L. Milliken, R. and Song, K., 2012 Hybridization of partial least squares and neural network models for quantifying lunar surface minerals Icarus 221 208225.CrossRefGoogle Scholar
Milliken, R.E. and Mustard, J.F. (2005) Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. Journal of Geophysical Research, 110,.CrossRefGoogle Scholar
Milliken, R.E. and Mustard, J., 2007 Estimating the water content of hydrated minerals using reflectance spectroscopy. I. Effects of darkening agents and low-albedo materials Icarus 189 550573.CrossRefGoogle Scholar
Milliken, R.E., Mustard, J.F., Poulet, F., Jouglet, D., Bibring, J.-P., Gondet, B., and Langevin, Y. (2007) Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface. Journal of Geophysical Research, 112,.CrossRefGoogle Scholar
Moroz, L.V. Arnold, G. Korochantsev, A.V. and Wásch, R., 1998 Natural solid bitumens as possible analogs for cometary and asteroid organics Icarus 134 253268.CrossRefGoogle Scholar
Mustard, J.F., 1992 Chemical analysis of actinolite from reflectance spectra American Mineralogist 77 345358.Google Scholar
Mustard, J.F. Adler, M. Allwood, A. Bass, D.S. Beaty, D.W. Bell, J.F. Brinckerhoff, W. Carr, M. Des Marais, D.J. Brake, B. Edgett, K.S. Eigenbrode, J.L. Elkins-Tanton, L.T. Grant, J.A. Milkovich, S.M. Ming, D. Moore, C. Murchie, S. Onstott, T.C. Ruff, S.W. Sephton, M.A. Steele, A. and Treiman, A., 2013 Report of the Mars 2020 Science Definition Team Mars Exploration Program Analysis Group (MEPAG) 154.Google Scholar
Mustard, J.F. and Hays, J., 1997 Effects of hyperfine particles on reflectance spectra from 0.3 to 25 mm Icarus 125 145163.CrossRefGoogle Scholar
Mustard, J.F. and Pieters, C.M., 1987 Quantitative abundance estimates from bidirectional reflectance measurements Journal of Geophysical Research 92 E617.CrossRefGoogle Scholar
Nash, D.B. and Conel, J.E., 1974 Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite Journal of Geophysical Research 79 16151621.CrossRefGoogle Scholar
Nguyen, T. Janik, L. and Raupach, M., 1991 Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies Australian Journal of Soil Research 29 4967.CrossRefGoogle Scholar
Nocita, M. Stevens, A. Toth, G. Panagos, P. van Wesemael, B. and Montanarella, L., 2014 Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach Soil Biology and Biochemistry 68 337347.CrossRefGoogle Scholar
Orthous-Daunay, F.-R. Quirico, E. Beck, P. Brissaud, O. Dartois, E. Pino, T. and Schmitt, B., 2013 Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites Icarus 223 534543.CrossRefGoogle Scholar
Pearson, V.K. Sephton, M.A. Kearsley, A.T. Bland, P.A. Franchi, I.A. and Gilmour, I., 2002 Clay mineral-organic matter relationships in the early solar system Meteoritics & Planetary Science 37 18291833.CrossRefGoogle Scholar
Pearson, V.K. Sephton, M.A. Franchi, I.A. Gibson, J.M. and Gilmour, I., 2006 Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions Meteoritics & Planetary Science 41 18991918.CrossRefGoogle Scholar
Pelkey, S.M., Mustard, J.F., Murchie, S., Clancy, R.T., Wolff, M., Smith, M., Milliken, R., Bibring, J.-P., Gendrin, A., Poulet, F., Langevin, Y., and Gondet, B. (2007) CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research, 112,.Google Scholar
Pendleton, Y.J. Sandford, S.A. Allamandola, L.J. Tielens, AGGM and Sellgren, K., 1994 Near-infrared absorption spectroscopy of interstel l a r hydrocarbon grains Astrophysical Journal Part1 437, 683696.Google Scholar
Pieters, C.M. and McFadden, L.A., 1994 Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes Annual Review of Earth and Planetary Sciences 22 457497.CrossRefGoogle Scholar
Pilorget, C. and Bibring, J.-P., 2013 NIR reflectance hyperspectral microscopy for planetary science: Application to the MicrOmega instrument Planetary and Space Science 76 4252.CrossRefGoogle Scholar
Pommerol, A. and Schmitt, B. (2008) Strength of the H2O near-infrared absorption bands in hydrated minerals: Effects of particle size and correlation with albedo. Journal of Geophysical Research, 113,.Google Scholar
Ransom, B. Bennett, R.H. Baerwald, R. and Shea, K., 1997 TEM study of in situ organic matter on continental margins: occurrence and the “monolayer” hypothesis Marine Geology 138 19.CrossRefGoogle Scholar
Reeves, J.B., 2012 Mid-infrared spectral interpretation of soils: Is it practical or accurate? Geoderma 189-190 508513.CrossRefGoogle ScholarPubMed
Rubin, A.E. Trigo-Rodríguez, J.M. Huber, H. and Wasson, J.T., 2007 Progressive aqueous alteration of CM carbonaceous chondrites Geochimica et Cosmochimica Acta 71 23612382.CrossRefGoogle Scholar
Salisbury, J.W. and Wald, A., 1992 The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals Icarus 96 121128.CrossRefGoogle Scholar
Salmon, V. Derenne, S. Lallier-Vergès, E. Largeau, C. and Beaudoin, B., 2000 Protection of organic matter by mineral matrix in a Cenomanian black shale Organic Geochemistry 31 463474.CrossRefGoogle Scholar
Shkuratov, Y. Starukhina, L. Hoffmann, H. and Arnold, G., 1999 A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon Icarus 137 235246.CrossRefGoogle Scholar
Summons, R.E. Amend, J.P. Bish, D. Buick, R. Cody, G.D. Des Marais, D.J. Dromart, G. Eigenbrode, J.L. Knoll, A.H. and Sumner, D.Y., 2011 Preservation of Martian organic and environmental records: Final report of the Mars biosignature working group Astrobiology 11 157181.CrossRefGoogle ScholarPubMed
Swayze, G.A. Smith, K.S. Clark, R.N. Sutley, S.J. Pearson, R.M. Vance, J.S. Hageman, P.L. Briggs, P.H. Meier, A.L. Singleton, M.J. and Roth, S., 2000 Using imaging spectroscopy to map acidic mine waste Environmental Science & Technology 34 4754.CrossRefGoogle Scholar
Swayze, G.A. Clark, R.N. Goetz, A.F.H. Livo, K.E. Breit, G.N. Kruse, F.A. Sutley, S.J. Snee, L.W. Lowers, H.A. Post, J.L. Stoffregen, R.E. and Ashley, R.P., 2014 Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy Economic Geology 109 11791221.CrossRefGoogle Scholar
Tompkins, S. and Pieters, C.M., 1999 Mineralogy of the lunar crust: Results from Clementine Meteoritics & Planetary Science 34 2541.CrossRefGoogle Scholar
Vandenbroucke, M. and Largeau, C., 2007 Kerogen origin, evolution and structure Organic Geochemistry 38 719833.CrossRefGoogle Scholar
Van Gorp, B. Mouroulis, P. Blaney, D. Green, R.O. Ehlmann, B.L. and Rodriguez, J.I., 2014 Ultra-compact imaging spectrometer for remote, in situ, and microscopic planetary mineralogy Journal of Applied Remote Sensing 8 084988.CrossRefGoogle Scholar
Vasques, G.M. Grunwald, S. and Sickman, J.O., 2008 Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra Geoderma 146 1425.CrossRefGoogle Scholar
Washburn, K.E. and Birdwell, J.E., 2013 Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties Organic Geochemistry 63 17.CrossRefGoogle Scholar
Washburn, K.E. Birdwell, J.E. Foster, M. and Gutierrez, F., 2015.Detailed description of oil shale organic and mineralogical heterogeneity via Fourier transform infrared microscopy Energy & FuelsCrossRefGoogle Scholar
Wattel-Koekkoek, E.J.W. van Genuchten, P.P.L. and van Buurman, P L ^B, 2001 Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils Geoderma 99 2749.CrossRefGoogle Scholar
Workman, J. and Weyer, L., 2008 Practical guide to Interpretive Near-Infrared Spectroscopy Florida, USA CRC Press, Boca Raton 332.Google Scholar